
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1995-03

Distributed hard real-time scheduling for a
software prototyping environment

Menezes Cordeiro, Mauricio de.
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/31595

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DISSERTATION

~*SKT=~>V~,m

DISTRIBUTED HARD REAL-TIME SCHEDULING
FOR

A
SOFTWARE PROTOTYPING ENVmONMENT

by

Mauricio de Menezes Cordeiro

March 1995

Dissertation Supervisor Man-Tak Shing

Approved for public release; distribution is unlimited.

19950814 070 ©TIC QUALITY rSBPEGESD

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this oolleotion of information ■ estimated to average 1 hour per response, including the time reviewing instruct»™, searching existing data source» , gathering and
maintaining the data needed, and completing and reviewing the eolleetion of information. Send eomments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden to Washington Headquarters Services. Directorate for Information Operations and Reports. 1215 Jefferson Davis Highway. Suite 1204.
Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-01BB), Washington. DC 20503.

1. AGENCY USE (Luvt Blank) 2. REPORT DATE

March 1995
3. REPORT TYPE AND DATES COVERED

Doctoral Dissertation
4. TITLE AND SUBTITLE

DISTRIBUTED HARD REAL-TIME SCHEDULING FOR A
SOFTWARE PROTOTYPING ENVIRONMENT

6. AUTHOR(S)

CORDEIRO, MAURICIO de MENEZES

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

•. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESSES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of
the Department of Defense or the United States Government

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Scheduling analysis is one of the most important activities in hard real-time systems development
since the correctness of hard real-time systems depends not only on the logical results of computation, but
also on the time at which the results are produced. This dissertation aimed at the development of both
fundamental theory and software tools to support efficiently and reliably the scheduling of distributed hard
real-time systems. The major work of this dissertation focuses on non-preemptive hard real-time
scheduling, for periodic and sporadic task sets, although some of the results are also applicable to the
preemptive case.

Several theorems for checking the schedulability of non-preemptive task sets are developed.
Previous results on necessary and sufficient conditions for scheduling non-preemptive task sets are
extended to cover the case when the task deadlines can be smaller or equal to their periods. The concept of
transient and cyclic schedules is introduced to overcome the weakness of the traditional methods, which
restrict the construction of a cyclic schedule to a fixed interval of length equal to the least common multiple
of the periods.

14. SUBJECT TERMS

Real-time, Hard Real-time, Real-time Scheduling, Hard Real-time Scheduling,
Scheduling, Static Scheduling, Distributed Scheduling, Non-preemptive,
Synchronization, Distributed Systems, Prototyping

15. NUMBER OF PAGES

181
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

Unlimited
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

UNCLASSIFIED
13. ABSTRACT (Continuation)

An algorithm for reducing the schedule length of periodic task sets is developed to further enhance
the schedulability of the hard real-time systems. Preliminary study on randomly graphs shows that the
algorithm do produce near-optimal solution.

To ease the problem of synchronization among tasks in distributed hard real-time systems, we
introduce the Fundamental Synchronization Theorem and a novel model for designing distributed hard
real-time systems without explicit synchronization, and develop an Ada95 software architecture to support
such a model. The application of this theorem will allow us to treat each set of tasks allocated to a
particular processor, as a totally independent set, if the tasks satisfy the conditions described in the
theorem. This approach will greatly decrease the difficulties in scheduling large distributed real-time
systems.

One of the necessary steps in distributed hard real-time scheduling is the allocation of tasks to
different processors in the distributed system. Algorithms for task allocation which minimise the inter-
module communication costs are developed and implemented.

Finally, a timing model for handling different time references in rapid prototyping systems is
introduced, to support the reuse of real-time components.

Standard Form 298, (Reverse) UNCLASSIFIED

Author:

Approved for public release; distribution is unlimited.

DISTRIBUTED HARD REAL· TIME SCHEDULING
FOR A SOFTWARE PROTOTYPING ENVIRONMENT

by

MAURICIO DE MENEZES CORDEIRO
Commander, Brazilian Navy

B.S., Brazilian Naval Academy, 1976
M.S., Naval Postgraduate School, 1987

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1995

zes Cordeiro

Approved by: Man-Tak S . g
· te Professor of Computer Science

Dissertation Supervisor

Sherif Michael
Associate Professor of Computer Science Associate Professor of Electrical and

Computer Engineerin

James Vincent Sanders Amr M. Zaky

p1_m ___ t=~ __ ,_~_. __ rc_~±f-~-:n-~ ·l _ -~~ _ --~---~-

Approved by: Computer Science ; '.,;;;,~~,--r~
RichardS. Elster, Dean of Instruction ~---·· ~-----~---------~---~

f

iii

IV

ABSTRACT

Scheduling analysis is one of the most important activities in hard real-time

systems development since the correctness of hard real-time systems depends not only on

the logical results of computation, but also on the time at which the results are produced.

This dissertation aimed at the development of both fundamental theory and software tools

to support efficiently and reliably the scheduling of distributed hard real-time systems. The

major work of this dissertation focuses on non-preemptive hard real-time scheduling, for

periodic and sporadic task sets, although some of the results are also applicable to the

preemptive case.

Several theorems for checking the schedulability of non-preemptive task sets are

developed. Previous results on necessary and sufficient conditions for scheduling non-

preemptive task sets are extended to cover the case when the task deadlines can be smaller

or equal to their periods. The concept of transient and cyclic schedules is introduced to

overcome the weakness of the traditional methods, which restrict the construction of a

cyclic schedule to a fixed interval of length equal to the least common multiple of the

periods. An algorithm for reducing the schedule length of periodic task sets is developed

to further enhance the schedulability of the hard real-time systems. Preliminary study on

randomly graphs shows that the algorithm do produce near-optimal solution.

To ease the problem of synchronization among tasks in distributed hard real-time

systems, we introduce the Fundamental Synchronization Theorem and a novel model for

designing distributed hard real-time systems without explicit synchronization, and develop

an Ada95 software architecture to support such a model The application of this theorem

wül allow us to treat each set of tasks allocated to a particular processor, as a totally

independent set, if the tasks satisfy the conditions described in the theorem. This approach

will greatly decrease the difficulties in scheduling large distributed real-time systems.

One of the necessary steps in distributed hard real-time scheduling is the allocation

of tasks to different processors in the distributed system. Algorithms for task allocation

which ininimize the inter-module communication costs are developed and implemented.

Finally, a timing model for handling different time references in rapid prototyping

systems is introduced, to support the reuse of real-time components.

VI

TABLE OF CONTENTS

I. INTRODUCTION TO HARD REAL-TIME SYSTEMS 1
A. INTRODUCTION 1
B. REVIEW OF PREVIOUS WORK 3

1. Preemptive Static Scheduling 5
2. Non-Preemptive Static Scheduling 6
3. Summary of Scheduling Complexity 6
4. A Brief Note about the Periodic Task Complexity 9
5. Complexity Results for Message Routing in Distributed Systems 10

E. CAPS AND PSDL OVERVIEW 13
A. MOTIVATION 13
B. THE WATERFALL MODEL 14
C. THE SPIRAL MODEL 15
D. THE COMPUTER AIDED PROTOTYPING SYSTEM (CAPS) 19

1. CAPS Tools 22
a. The PSDL Editor 22
b. The Text Editor 22
c. The Interface Editor 23
d. The Requirements Editor 23
e. The Change Request Editor 23
f. The Translator 24
g. The Scheduler 24
h. The Compiler 24
L The Evolution Control System 24
j. The Merger 25
k. The Software Base 25

E. THE PROTOTYPING SYSTEM DESIGN LANGUAGE (PSDL) 25
1. PSDL Computational Model 26

a. Operators 26
b. Data Streams 27
c. State Streams 28
d. Types 28
e. Exceptions 28
f. Timers 29

2. Control Abstractions 29
a. Periodic and Sporadic Operators 29
b. Data Triggers 29
c. Execution Guards 30
d. Conditional Output 31

3. Timing Constraints 31
4. A PSDL Prototype Example 36

vu

HI. FUNDAMENTAL ISSUES IN REAL-TIME SCHEDULING 39
A. THE SCHEDULING MODEL AND SOME DEFINITIONS.... 39
B. CONDITIONS FOR SCHEDULABILITY OF NON-PREEMPTIVE TASKS.. 42

1. The Maximum Execution Time Theorem 42
2. The Finish-Within Theorem 45
3. The Minimum Period Theorems 45
4. The Load Factor Theorem 47
5. The Task Demand Theorem 48

C. THE HARMONIC BLOCK DILEMMA !!!!!!!!!!!!!!!!! 53
D. A NOTE ABOUT PRECEDENCE CONSTRAINTS ". 57
E. COPING WITH APERIODIC TASKS 59

1. The Conversion 50
2. Important Remarks about the Conversion..... 65
3. Implementation Issues about the Conversion 67

IV. DISTRIBUTED SCHEDULING 69
A. INTRODUCTION I!!!!!!!!!!!!!!!!!! 69
B. ARCHITECTURAL ISSUES !!!!!!!!!!!!!!!!!! 70

1. Different Clocks 70
2. Speed of CPUs".............71
3. Memory 71
4. The Communication Media 71
5. Interconnectivity 71

C. THE PROBLEM STATEMENT !!!!!!!!!!!!!!!!!! 71
D. SYNCHRONIZATION IN PSDL 73
E. DEALING WITH SPECIAL CASES Z!!Z! 74
F. TACKLING THE SYNCHRONIZATION PROBLEM !!!!!!!!!!!!!!! 81

1. Additional Restrictions Imposed on the Timing Constraints 89
G. THE TASK ALLOCATION MODEL 91

1. Some Basic Definitions 94
2. The Approach 95
3. The Current Implementation 100

V. ARCHITECTURAL ISSUES OF THE CAPS SCHEDULER 103
A. THE CURRENT SCHEDULER - UNIPROCESSOR ARCHITECTURE... 103

1. Data Triggers 105
2. Execution Triggers 107
3. Output Guards 108

B. THE PROPOSED DISTRIBUTED ARCHITECTURE"!!".""!.""!!."!!"."."!!." 110
C. IMPLEMENTATION ISSUES OFTHE COMMUNICATION SUBSYSTEM... 114

1. The RPC Model _ 115
2. The First Approach 115

vni

3. The Ada95 Approach 118
a. The Package Streams 120
b. Conclusions 122

D. CPU SPEED RATIO ISSUES IN A PROTOTYPING ENVIRONMENT.... 124
1. Choosing a Reference 125
2. CAPS Timing Model 126

a. Building the Prototype 127
b. Installing Components in the Software Base 127

3. Relations between CPU Speed Ratio and Timing Errors 128
4. How the CPU Speed Ratio affects Scheduling 130
5. Handling Unwanted Interactions during Prototype Scheduling 131

VI. EXPERIMENTAL RESULTS 133
A. INTRODUCTION 133
B. THE RANDOM GRAPH GENERATOR 133
C. FIRST FINDINGS AFTER USING THE RANDOM GRAPH GENERATOR.... 135
D. MINIMIZING THE HARMONIC BLOCK 137
E. THE NEW DISTRIBUTED SCHEDULING ALGORITHM - SOME RESULTS 140

VH. CONCLUSIONS AND RECOMMENDATIONS 143
A. SUMMARY OF THE DISSERTATION 143
B. POSSIBLE CAPS MODIFICATIONS 146

1. Enhancing the CAPS Syntax Directed Editor (SDE) 146
2. Tasks with Soft Deadlines 146
3. Preemptive Static Scheduling 147
4. Triggering Conditions versus Stream Types 147
5. Estimating the Execution Time 148
6. The Uninitialized Sampled Stream Problem 149
7. State Stream versus Data Flow 149

C CONCLUSIONS 150

LIST OF REFERENCES 153
BIBLIOGRAPHY 159
INITIAL DISTRIBUTION LIST 161

IX

TABLE OF FIGURES AND TABLES

Figure 1.1.
Figure 1.2.
Table 1.1.
Table 1.2.
Table 1.3.
Table 1.4.
Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 2.5.
Figure 2.6.
Figure 2.7.
Table 2.1.
Figure 2.8.
Table 3.1.
Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4.
Figure 3.5.
Figure 3.6.
Figure 3.7.
Figure 3.8.
Figure 3.9.
Figure 3.10.
Figure 3.11.
Figure 4.1.
Figure 4.2.
Figure 43.
Figure 4.4.
Figure 4.5.
Table 4.1.
Table 4.2.
Figure 4.6.
Figure 4.7.
Figure 4.8.
Figure 4.9.
Figure 4.10.
Figure 4.11.

Types of Task Deadlines 2
Scheduling Taxonomy 4
Major Results in Scheduling Algorithms 7
Summary of Non-Preemptive Scheduling Complexity 8
Complexity of The Scheduling Problem with Several Resources 8
Complexity for Non-Preemptive Transmissions 10
The Waterfall Model 14
The Prototyping Process 17
The Spiral Model 18
The CAPS Structure 20
Sporadic Timing Constraints 33
Periodic Timing Constraints 34
The Scheduling Interval 35
Main PSDL Timing Constraints 35
Prototype of an Autopilot 37
Summary of our Scheduling Model 41
Theorem 1 for the Sporadic Case 43
Kpelining Operators 44
The Minimum Period Sliding Window 46
Different Task Release Time for Task X 50
The Transient and Cyclic Schedules 54
Determining the Start Time tc of the Cyclic Schedule 56
The Sporadic Conversion when MCP<MRT-MET 60
The Sporadic Conversion when MCP^MRT-MET 61
Worst Case Situation 63
Effects of TP on the Load Factor 65
Restrictions in the Producer Imposed by the Consumer's MCP 66
Typical Radar Data 73
Producers with Different Periods 75
Potential Overflow Situation 76
Different Stream Types Combination 76
Period Incompatibility among Operators 77
PSDL Data Triggering Semantic Table 78
PSDL Timing Constraints Semantic Table 80
Reason for No Synch when PERPRQD £ PERCONS (Uniprocessor Case).... 82
Reason for No Synch when PERPROD < PERCONS (Distributed Case) 83
Reason for No Synch when PERPROD ^ PERCONS (Distributed Case) 83
Synchronization among Periodic Operators when FWA = META 84
The Consumer-Producer Paradigm 87
Seeking for an Upper-Bound 88

XI

Figure 4.12.
Figure 4.13.
Table 4.3.
Table 4.4.
Table 4.5.
Figure 4.14.
Figure 4.15.
Figure 4.16.
Figure 5.1.
Figure 5.2.
Figure 5.3.
Figure 5.4.
Figure 5.5.
Figure 5.6.
Figure 5.7.
Figure 5.8.
Figure 5.9.
Figure 5.10.
Figure 5.11.
Figure 5.12.
Figure 5.13.
Figure 5.14.
Table 5.1.
Figure 5.15.
Figure 6.1.
Figure 6.2.
Figure 63.
Table 7.1.
Figure 7.1.

New Timing Constraints for the Sporadic Operator 90
The Saturation Effect 9^
Placement Cost Matrix 95
IMC Cost Matrix 95

Distance Cost Matrix 95
The Data Dependency Graph 96
Algorithm for Calculating the IMC Cost Function 98
Partial View of the Allocation Program 100
Partial View of Patriota 104
TRIGGERED BY SOME Implementation 106
TRIGGERED BY ALL Implementation 107
TRIGGERING IF Implementation 108
Output Guards Implementation 108
CAPS Supervisory Program Structure 109
The New PSDL_Strcams Ada Package Specification 112
Body of the Netwoik Stream Task H3
Justification for the Header Information 114
The RPC Programs for the New Scheduler 117
Package SystemRPC (Specification) H9
Package Ada.Streams (Specification) 121
Stream Attributes 122
Architecture for the Distributed CAPS Scheduler 123
Default Values for the Timing Model 127
Effect of the CPU Speed Ratio on the Schedule 131
Partial View of the Data Structure Used to Build the Random Graph.... 134
Algorithm for Optimizing the LCM 139
Optimization Results 140
Triggering Condition and Stream Type Combinations 148
The Uninitialized Sampled Stream Problem 149

Xu

ACKNOWLEDGMENTS

First and foremost, I am grateful to my friend, lover and wife Cristina, and our

children Igor and Lucas, for enduring throughout the course of this longer-than-planned

journey. Their love, support and encouragement helped make this dissertation possible.

Next I would like to thank my parents Franklin and Helena for their unconditional

love and support throughout my life.

To my dissertation advisor, Man-Tak Shing, I would like to express my deepest

gratitude for all confidence, guidance and support. I will never forget the night before my

defense, after that strong rain that isolated his house, when he kept trying by all means,

and finally succeeded, to meet me to rehearse my presentation.

I would like also to thank the other members of my committee, Luqi, Amr Zaky,

Sherif Michael and Jim Sanders for helping me in various ways during the course of this

research. To Yutaka Kanayama, who was the PhD. Committee Chairman during most of

my tour as the Ph.D. Student Representative, my special thanks for his patience and

assistance. Many thanks to my fellow PhD. students, whose friendship and support were

very important to my success. Thanks also to the staff of the Computer Science

Department, especially Russell Whallen, Mike Williams and Walter Landaker for their

unrestricted and unremitting support

Finally, I would like to thank God for helping me overcome one more stage in my

life journey.

xiu

I. INTRODUCTION TO HARD REAL-TIME SYSTEMS

A. INTRODUCTION

Traditionally, most real-time systems have been built for military purposes. As

computers become faster, more inexpensive, and more reliable, a tendency towards

automation is emerging in virtually every field of activity. Areas in which real time

systems are being more widely employed include manufacturing, communications,

defense, transportation, aerospace, energy, and health care.

"Hard real-time systems" are defined as those systems in which the correctness of

the system depends not only on the logical results of computation, but also on the time at

which the results are produced. They are also characterized by the fact that severe

consequences will result if logical as well as timing correctness properties of the system

are not satisfied. [SR88]

To put it briefly, real-time systems differ from traditional systems in that deadlines

or other explicit timing constraints are attached to the tasks or processes.

Audsley and Bums presented a very interesting approach [AB93], where the time

taken to complete a task is mapped against the value this task has to the system,

developing the so called time-value functions. This work proposes an adaptation of their

approach to be used by CAPS, where the time critical tasks could have several kinds of

deadlines, as shown in Figure 1.1. Tasks with hard deadlines may cause damage to the

system if they start early or finish late. Tasks with soft deadlines convey the main idea of

"better late than never", and the tasks with hybrid deadlines can be assumed to have a soft

deadline behavior until certain point in time, but then they become hard deadline tasks,

generating damage to the system. Using this approach, it is possible to determine whether

it is more convenient to preempt a task that has not finished within its deadline or keep it

running. This approach provides a much better representation for a task deadline, than

mat achieved by merely calling it a soft or a hard deadline.

In general it can be said that there are three types of tasks, depending upon their

deadline characteristics. The periodic tasks that execute on a regular basis, and usually

have a period and a required execution time. The aperiodic tasks (also known as non-

periodic) which are essentially random tasks triggered by some external event. Aperiodic

tasks may also have some timing constraints that limit their maximum start or finish time.

However, if aperiodic tasks are allowed to have hard deadlines (in other words, if they are

allowed to have negative values once the deadline is missed) worst case analysis cannot be

further discussed without further restricting their timing behavior. This is the rationale

behind the third type of task, the sporadic task, in which a minimum period between any

two aperiodic events is required. [AB93]

Figure 1.1. Types of Task Deadlines

In addition to timing constraints, a task can have other constraints, such as [SR88]:

1) resource constraints - which note the resources required during the execution

of the task

2) precedence constraints - that specify a partial (perhaps total) ordering on the

execution of the tasks

3) concurrency constraints - that describe which tasks can run concurrently, to

share, for example, a resource

4) placement constraints - which note whether a given task is to run in a specific

processor

5) criticalness - which is the relative value to the system that is associated with

some specific task when it meets its deadline

6) preemptiveness - determining whether a task can be interrupted by other tasks

and resume execution afterwards

7) communication requirements - that note issues, such as acceptable delays, for

inter-task communications and synchronization protocols

Task scheduling in hard real-time systems can be either static or dynamic. In static

scheduling it is assumed that all information about the tasks is known a priori, and the

schedule is usually generated off-line. In dynamic scheduling, although all information

about the tasks may be known a priori, they are allowed to be dynamically invoked, and

the schedule is calculated "on the fly". There has been a great deal of debate about the

appropriateness of dynamic algorithms for hard real-time systems. Many people are in

favor of static scheduling because it seems reasonable to assume that for safety-critical

applications all the schedulability should be guaranteed before execution [AB93].

B. REVIEW OF PREVIOUS WORK

According to Baker [Bak74], scheduling is the allocation of resources over time to

perform a collection of tasks. This rather general definition conveys the basic idea of

scheduling theory, which is a collection of principles, models, techniques and logical

conclusions that provide insight into the scheduling function.

Many of the early developments in the field of scheduling were motivated by

problems arising in manufacturing. Today, even though scheduling is used in many

different areas, there are still references that deal with machines instead of processors, and

with jobs instead of tasks.

In order to have a better understanding of the context in which scheduling issues

are found, it is reasonable to begin by proposing a taxonomy for the scheduling function.

This taxonomy is an enhancement of that proposed by Cheng, et al. [CSR87] and is

illustrated in Figure 1.2.

As shown in the figure, classical scheduling can be divided into four major areas:

single-machine problems, parallel-machine, flow shop, and job shop scheduling. Most of

these areas make use of objective functions, such as minimizing flowtime, niinimizing

mean tardiness, and niinimizing completion time (makespan), which does not convey much

of the important information needed by real-time systems. In most of these problem areas,

the deadline concept is not even considered. Nevertheless, some of these results can

provide very fruitful insights into real-time scheduling problems. Another issue that is not

considered in many of the problems associated with classical scheduling is the idea of

periodic tasks, meaning tasks that run forever. For further reading on classical scheduling

the reader is directed to the work of Baker [Bak74] and Stankovic, et al. [SSN93]. The

latter reference presents a concise survey on the implications of classical scheduling results

for real-time systems.

Scheduling 1

Classical
IZL
Real-Time

Single Machine

-: Parallel Machlnas

Hard
—r~

Soft

-i Flow Shop |
Static

J_
Dynamic

Job Shop
X I

| Preemptable Non
Praamptabla

- Unl/Multlprocassor j

Praamptabla

UnVMuMpro

Non
Praamptabla

Unl/MuMproc 3
Plstrtbutad } L Distributed j L Distributed } L| Distributed j

Unl/Multlprocassorj

Figure 1.2. Scheduling Taxonomy

Tasks can also be distinguished as preemptable or non-precmptable. A task is

preemptable if it can be interrupted by other tasks and can resume execution afterwards.

A non-preemptable task, once started, must run to completion.

Another concept that requires introduction is the difference between

multiprocessor systems and distributed systems. In multiprocessor systems, the cost of

interprocessor communications is negligible, as the different processors usually have some

kind of shared memory and a global clock. In distributed systems, the cost of

interprocessor communications is not negligible, as the processors do not share any

memory space and each processor has its own clock. It is now appropriate to make a brief

review of some previous work done in hard real-time scheduling, with an emphasis on the

results related to static scheduling.

1. Preemptive Static Scheduling

In cases where the tasks are periodic, which is the most common case in

real-time systems, it can be said that the most important result for the uniprocessor case

was provided by Liu and Layland [LL73]. They proved that the Earliest Deadline First

(EDF) algorithm is optimal for any set of independent periodic tasks where optimality is

defined by the statement, "if a set of tasks can be scheduled by any algorithm, then it can

be scheduled by the EDF algorithm". They also demonstrated some bounds on processor

utilization when using this algorithm. Their results were extended to cover cases where

the release times are arbitrary by Jeffay [Jef89a]. Also based on Liu and Layland's work,

a more elaborate schedulability test was proposed by Lehoczky, et al. [LSD89]. This test

employed the concept of processor time demand for handling cases where the deadlines

were smaller than the periods. Sha and Lehoczky [LS86] described a technique of

splitting the periods so that better processor utilization could be achieved.

Horn [Hor74] developed an optimal CKn2) algorithm that was also based

on the earliest deadline first principle. Originally formulated for non-periodic tasks, this

algorithm proved capable of handling independent tasks with arbitrary deadlines and

release times in a uniprocessor environment. For the same type of tasks, he also

introduced an algorithm for the multiprocessor case that was based on the network flow

method. Martel [Mar82] extended the work of Horn by allowing for processors with

different speeds.

For multiprocessor scheduling of periodic tasks, most of researchers have
adopted a partition approach, where some kind of bin-packing algorithm is used to

determine the sub-optimal partitions. Examples can be found in the work of Davari and

Dhall [DD86], Bannister and Trivedi [BT83], and in that of Dhall and Liu PL78].

2. Non-Preemptive Static Scheduling

There has been a great deal of research in the area of preemptive real-time

scheduling. For the non-preemptive case, however, most problems have been shown to be

NP-hard, even in the uniprocessor case. Hence, the majority of the work that has been

done in this area covers very specific cases, such as when unit computation times are

involved, or when release times are the same. Moore [M0068] showed that the earliest

deadline algorithm is optimal for scheduling a set of independent tasks that have the same

release time. Bratley, Florian and Robillard [BFR71] developed an implicit enumeration

algorithm to determine scheduling for non-preemptive tasks with arbitrary release times

and deadlines. Baker and Su [BS74] used a similar approach to minimize the maximum

tardiness of tasks. Erschler, et al. [EFM83] developed a necessary condition for

scheduling tasks with arbitrary release times and deadlines. When utilizing periodic task

sets, which are definitely the major area of focus for this study, the major results can be

found in the work of Mok [Mok83], Xu [XP90], Jeffay [JSM91] and Zhu [ZLC94].

3. Summary of Scheduling Complexity

In dealing with scheduling problems where most of the input instances have been

proven to be NP-hard, it is very important and beneficial to know in which class a

particular instance belongs, so that the problem can be addressed appropriately. However,

when one looks into the huge amount of research in this area, it becomes apparent that the

various studies are very difficult to compare. While it is undesirable to limit the creativity

of researchers, it is increasingly apparent that some kind of standard is needed, so that

individual research efforts at least speak in the same language.

Nevertheless, this section offers a summary of the major results achieved in the

area of time complexity of scheduling algorithms, for both the preemptive and non-

preemptive cases. Whenever the result is applicable to periodic task sets, it will be briefly

mentioned.

In Table 1.1, it has been listed, for each case, the number of processors (m), the

precedence relation (<) among the tasks (if one exists), the valid domain for the release

time (r,), the deadline (fi), the computation time (c), whether it is preemptive or non-

preemptive, the time complexity of the problem, the reference paper, and, finally, some

additional remarks. Note that in this table most of the results are for non-periodic task

sets. In the following section, the problem of how to apply these results to the periodic

case is addressed.

Preemptive
-'■■•m ■;::;;:.:.; Preced»

Relations M
:-il d Complexity Reference Remark

arb arbitrary 0 arb arb NPC GJ77a

art) forest k oo arb CXnloRm) GJ77b

arb tree 0 oo arb CXn2) MC70

arb tree 0 oo arb (Xnlogm) GJ77b

arb empty arb oo arb CXn3) Hor74 Network Flow
Same Speed Processors

arb empty arb oo arb CXmV+n5) Mar82 Network Flow
Different Processors

arb empty arb oo arb CXnlogn) DD86 EDF(di = Pi)orRM +
<Xn) Next-Fit

1 arbitrary arb arb arb CXn2) Bla76 EDF based

1 empty arb oo arb CXn2) Hor74 EDF based

1 empty 0 arb arb CXn2) LL73 rate-monotonic
periodic tasks (d* = Pi)

Non-Preemptive
arb tree 0 oo 1 CXnlogn) Hu61

arb empty arb arb 1 CXn'loglogn) Sim83 Barrier's A1R.

2 arbitrary arb arb 1 CXn1) GJ77a

1 arbitrary 0 oo arb 0(n2) Law73 Backward EDF

1 arbitrary arb arb 1 CXnlogn) GJS81 Forbidden Regions Alg.
(Voycomplex data structures)

1 empty arb arb 1 CXnlogn) Jac55 EDF (Minimizes Completion
Time)

1 empty 0 arb arb CXn2) M0068 EDF

Table 1.1. Major Results in Scheduling Algorithms

Table 1.2 summarizes the complexity boundaries of various non-preemptive

problems with respect to the number of processors, computation time, and type of partial

order.

Jtiislfi Preced.
Relations lili ill iitei Complexity Reference

k>m>2 arbitrary 0 k i OPEN

aib arbitrary 0 k i NPC U1175

arb empty 0 k arb NPC U1175

2 arbitrary 0 k U NPC U1175

2 empty 0 k arb NPC U1175

1 empty arb arb arb NP-hard GJ77a

k£m£2 arbitrary 0 k 1 P CG72

arb tree 0 k 1 P Hu61

arb empty 0 k 1 P U1175

Table 1.2. Summary of Non-Preemptive Scheduling Complexity

Table 1.3 is very interesting in the sense that it delimits the boundaries between

NP-completeness and polynomial solvability for the more constrained non-preemptive

scheduling problem, where resources (Rsrc) other than processors are being requested by

the tasks. As can be seen, by having no precedence relations, or for values of m less than

2 in the first case, or by making m less than three in the second case, the resulting

problems can be solved in polynomial time. [GJ75]

m Preced.
Relations

rb * Ci Complexity Reference Remark

m£2 forest 0 k 1 NPC GJ75 Rsrc 2:1

m£3 empty 0 k 1 NPC GJ75 Rsrc 21

Table 1.3. Complexity of the Scheduling Problem with Several Resources

Other important results are:

"It is impossible to find a totally optimal run-time scheduler even if
any ready process is permitted to preempt any other process in
progress".[Mok76]

"When there are mutual exclusion constraints, it is impossible to
find a totally on-line optimal run-time scheduler".[Mok83]

"The problem of deciding whether it is possible to schedule a set of
periodic processes which use semaphores only to enforce mutual exclusion
is NP-hard".[Mok83]

"The problem of computing a static schedule for a set of periodic
timing constraints is NP-haid".[Mok83]

"Non-preemptive scheduling of periodic tasks when release times
are taken into consideration is NP-hard in the strong sense".[JSM91]

"The processor allocation problem is NP-complete even for the
case where only two processors are available and the processor scheduling
problem resulting from any partition is easy".[Mok83]

"The problem of finding an optimal schedule is NP-hard for a single
processor even if all tasks have the same ready time and deadline". [LW90]

4. A Brief Note about the Periodic Task Complexity

It is very common for authors of papers that deal with the scheduling of non-

periodic tasks, i.e., tasks that are executed only once, to infer that their algorithms or

methods can also be applicable to periodic tasks by simply applying the same algorithm to

the set of tasks occurring within a time period that is equal to the least common multiple

of their periods.

Although this assertion is true in most of cases, one must note that a polynomial

time algorithm for scheduling non-periodic tasks may take exponential time to schedule a

set of periodic tasks using the same algorithm To see this, consider an algorithm A that

schedules a set T of n non-periodic tasks in time 0(11I3), where 111 is equal to the size of

the input instance. Clearly, by using a binary encoding, 0(n + Hog r* + Slog c* + Hog d<)

bits are needed to encode such an instance. Now, assume a set Tof n periodic tasks with

periods p,, p2,... , p„, whose input size is 0(n + Hog T, + Slog Cj + Hog d; + Hog p,).

Note that in the worst case an LCM of p, x p2 x ... x p„ exists. So, in order to use

algorithm A to schedule the periodic task set T, one must first transform T into an

equivalent set T" of non-periodic tasks with p2X p3...x p„ instances of task Ti, pix p3...x

p, instances of task T2, pix pj.. .x p„ instances of task T3, and so on.

Clearly, the size II"I of the input instance T" is equal to

0(n+t [(log r, + log Ci + log di) x Pl xPzX-xp"])
i=i p.

and algorithm A will take 0(in3) time to schedule all task instances in T". But, since H"l
n

g C x ([n + I (log ri + log cj + log d; + log pi)]k) for any constants C and k, O(II'f)

is exponential with respect to H'l.

5. Complexity Results for Message Routing in Distributed Systems

This section presents some very interesting results from Leung [LTW89] regarding

the possibility or impossibility of sending a set of messages in a distributed real-time

system on-time. Each message M is represented by the quintuple (s;,ej,li,rj,di) where Si

denotes the origin node for Mi, d denotes the destination node, 1^ is the length of M;, rs is

the release time, and d; denotes the deadline of M;. The problem was studied for both

preemptive and non-preemptive cases, but this discussion will be restricted to the latter. It

is also assumed that the processors are connected by an uni-directional ring. Table 1.4

shows the complexity results for the non-preemptive transmission. An entry marked k

denotes that the parameter is the same for all messages, while a V entry denotes that it can

vary according to the message.

Si ei rt * Complexity
V k k k P
k V k k P
k k V k P
k k k V P
k k V V NP
k V k V NP
k V V k NP
V k k V NP
V k V k NP
V V k k NP

Table 1.4. Complexity for Non-Preemptive Transmissions

10

As shown in Table 1.4, the message routing problem becomes NP whenever two

or more parameters are allowed to be arbitrary. These and other results had a great

influence on the manner in which this dissertation will treat distributed scheduling.

11

12

H. CAPS AND PSDL OVERVIEW

A. MOTIVATION

The United States Department of Defense (DoD) is currently the world's largest

user of computers. Each year, billions of dollars are allocated for the development and

maintenance of progressively more complex weapons and communications, and

information systems. These systems increasingly rely on information processing, utilizing

embedded computer systems, and are often characterized by time periods or deadlines

within which some event must occur. Such periods or deadlines are known as "hard real-

time constraints". Satellite control systems, missile guidance systems, and communications

networks are examples of embedded systems with hard real-time constraints. The

correctness and reliability of these software systems is critical, making software

development of these systems an immense task with increasingly high costs and potential

for design errors [Boo87].

Over the past twenty years, technological advances in computer hardware

technology have reduced the hardware portion of total system cost from 85 percent to

about 15 percent. In the early 1970s, studies showed that computer software alone

comprised approximately 46 percent of the total estimated DoD computer costs. Of this

cost, 56 percent was devoted specifically to embedded systems. In spite of the

tremendous expense, most large software systems were characterized as not providing the

functionality that was desired, taking too long to develop, costing too much time or taking

too much space to use, and lacking the ability to evolve to meet the user's changing needs

[Boo87].

Software engineering evolved in response to the need to more efficiently design,

implement, test, install, and maintain larger and more complex software systems. The

term "software engineering" was coined in 1967 by a NATO study group, and endorsed

by the 1968 NATO Software Engineering Conference [Sch90]. The conference

concluded that software engineering should use the philosophies and paradigms of

13

traditional engineering disciplines. Numerous methodologies have been introduced to

support software engineering. The major approaches which underlie these different

methodologies are the waterfall model [Lam88], the spiral model [Boe86], and the

prototyping methods of development [Luq89].

B. THE WATERFALL MODEL

The waterfall model describes a sequential approach to software development as

shown in Figure 2.1. The requirements are completely determined before the system is

designed, implemented and tested. The cost of systems developed using this model is very

high. Required modifications that are realized late in the development of a system, such as

during the testing phase, have a much greater impact on the cost of the system than they

would have if they had been determined during the requirements analysis stage of

development. Requirements analysis may be considered the most critical stage of software

development, since this is when the system is defined.

SYSTEM
ENGINEERING

SYSTEM RBQ.

PROBLEMS

SYSTEM

^^V REQMTS.

ANALYSIS

REQMTS.

PROBLEMS

^^^ REQMTS.

DESIGN

DESIGN
PROBLEMS

^^V DESKJNDOC

CODING

TESTING

eeee «eeee^sces > >* e o o o ^ceee ^^

Figure 2.1. The Waterfall Model

SOURCE CODE

USER'S*

MAINTENANCE
MANUAL

MAINTENANCE

14

Requirements are often incompletely or erroneously specified, due to the often vast

difference in the technical backgrounds of the user and the analyst. It is often the case that

the user understands his application area but does not have the technical background to

communicate his needs to the analyst, while the analyst is not familiar enough with the

application to detect a misunderstanding between himself and the user. The successful

development of a software system is stricdy dependent upon this process. The analyst

must understand the needs and desires of the user and the performance constraints of the

intended software system in order to specify a complete and correct software system.

Requirements specifications are still most widely written using the English

language, which is an ambiguous and non-specific mode of communication.

Another difficulty of the classical life cycle is that communication between a

software development team and the customer or the system's users is weak. Most of the

time the customer does not know what he or she wants. In that case it is hard to

determine the exact requirements, since the software developer is also unfamiliar with the

problem domain of the system. Formal specification languages are used to formalize

customer needs to a certain extent Another disadvantage of the classical project life cycle

is that a working model of the software system is not available until late in the project time

span. This may cause two things:

1) A major bug that remains undetected until the working program is reviewed,

which can be disastrous [Pre87];

2) The customer will not a have an idea of what the system will look like until it is

complete.

C THE SPIRAL MODEL

Large real-time systems and systems which have hard real-time constraints are not

well supported by traditional software development methods because the designer of this

type of system would not know if the system can be built with the timing and control

constraints required until after much time and effort has been spent on implementation. A

15

hard real-time constraint imposes a time-bound on the response time of a process which

must be satisfied under all operating conditions.

To solve the problems raised in requirements analysis for large, parallel,

distributed, real-time, or knowledge-based systems, current research suggests an

alternative paradigm for software development and evolution based on rapid prototyping

[LB88]. The purpose of prototyping is to ensure that proposed requirements and system

concepts adequately match the needs of the prospective client(s) before detailed

optimization and implementation efforts begin. As a software methodology, rapid

prototyping provides the user with increasingly refined systems to test and the designer

with ever better user feedback between each refinement The result is more user

involvement throughout the development/specification process, and consequently, better

engineered software.

The prototyping method shown in Figure 2.2 has recently become popular. "It is a

method for extracting, presenting, and refining a user's needs by building a working model

of the ultimate system - quickly and in context" [Boa84]. This approach captures an

initial set of needs, and quickly implements those needs with the stated intent of iteratively

expanding and refining them as the user's and designer's understanding of the system

grows. The prototype is only to be used to model the system's requirements, rather than

as an operational system [You89].

16

Initial Goals
 ► DETERMINE

REQUIREMENTS!
Requirements DESIGN/MODIFYl

PROTOTYPE

CONSTRUCT
PRODUCTION |4-

SYSTEM

Modularlzatton and Objects

New Goals

System

PRODUCTION
USE

Figure 2.2. The Prototyping Process

This iterative prototyping process is also known as the "Spiral Model of Software

Development" and is illustrated in Figure 2.3. In the prototyping cycle, the system

designer and the user work together at the beginning of the project to determine the

critical parts of the proposed system. The designer then implements a prototype of the

system based on these critical requirements by using a prototype description language

[Luq89]. The resulting system is presented to the user for evaluation. During these

demonstrations, the user determines whether the prototype behaves as it is supposed to

do, examines user interface options, and, most importantly, verifies understanding of the

problem and solution. If errors are found at this point, the user and the designer work

together again on the specified requirements to correct them. Concurrently, a risk analysis

is initiated to decide whether or not to move on to the next cycle of the spiral. This

process continues until the user determines that the prototype successfully captures the

critical aspects of the proposed system. This is the point where precision and accuracy are

obtained for the proposed system. The designer then uses the prototype as a basis for

designing the production software.

17

DEFINE/REVISE
REQUIREMENTS

&
RISK ANALYSIS,

CUSTOMER
EVALUATION

INCREMENTAL
DESIGN

INCREMENTAL
IMPLEMENTATION

TOWARDS THE FINAL SYSTEM

Figure 2.3. The Spiral Model

Some advantages and disadvantages of iterative development methodology are

listed below:

Advantages:

1) There is constant customer involvement (revising requirements).

2) Software development time is greatly reduced.

3) Methodology maps to reality.

4) It allows use of off-the-shelf tools.

Disadvantages:

1) There are configuration control complexities.

2) The developer is compelled to manage customer enthusiasm.

3) There are uncertainties in contracting the iterative development

Manually construction of the prototype still takes too much time, and can

introduce many errors. Also, it may not accurately reflect the timing constraints placed

upon the system. What is needed is an automated method of rapidly prototyping a hard

18

real-time system that reflects those constraints and requires minimal development time.

Such a system should exploit reusable components and validate timing constraints.

If Ada software that is reliable, affordable, and adaptable is to be produced and

maintained, the characteristics of Ada may not be the only important matter to consider, as

the characteristics of Ada software development environments may well be critical

[BL91].

The rapid, iterative construction of prototypes within a computer aided

environment automates the prototyping method of software development, and is called

rapid prototyping. Rapid prototyping provides an efficient and precise means to determine

the requirements for the software system, and greatly improves the likelihood that the

software system developed from the requirements will be complete, correct, and

satisfactory to the user. The potential benefits of prototyping depend critically on the

ability to modify the behavior of the prototype with less effort than that required to modify

the production software. Computer aided and object-based rapid prototyping provides a

solution to this problem.

D. THE COMPUTER AIDED PROTOTYPING SYSTEM (CAPS)

The Computer-Aided Prototyping System (CAPS) [LK88] is a software

engineering tool for developing prototypes of real-time systems. It is useful for

requirements analysis, feasibility studies, and the design of large embedded systems.

CAPS is based on the Prototype System Description Language (PSDL) [LBY88], which

provides facilities for modeling timing and control constraints within a software system.

An overview of PSDL will be presented in the following section. CAPS is a development

environment, implemented in the form of an integrated collection of tools, linked together

by a user-interface, and provides the following kinds of support to the prototype designer:

• timing feasibility checking via the scheduler,

• consistency checking and some automated assistance for project planning,

scheduling, designer task assignment, and project completion date estimation

via the Evolution Control System,

19

• design completion via the editors,

• computer-aided software reuse via the software base.

A CAPS prototype is initially built as an augmented data flow diagram and a

corresponding PSDL program. The CAPS data flow diagram and PSDL program are

augmented with timing and control constraint information, which is used to model the

functional and real-time aspects of the prototype. The CAPS environment provides all of

the necessary tools for engineers to quickly develop, analyze, and refine real-time software

systems.

The general structure of CAPS is shown in Figure 2.4. The CAPS User-Interface

provides access to all of the CAPS tools, and facilitates communication between tools

when necessary. The tools in Figure 2.4 are grouped into four sections: Editors,

Execution Support, Project Control and Software Base. Each CAPS tool is associated

with a different aspect of the CAPS prototyping process.

Figure 2.4. The CAPS Structure (from Bro[94])

CAPS is specifically designed to assist and partially automate development efforts

which lie in the shaded regions of the prototyping process (Figure 2.2). Specifically, based

20

on a set of initial requirements, CAPS allows the engineer to design, modify, demonstrate

and validate a software system. Through this process, system requirements can be refined

and modified as necessary.

The CAPS prototyping process is more specific, and it could be said that it is a

refinement of what is shown in Figure 2.2, and is outlined below. [Bro94]

1) Based on requirements, design (or modify) the data flow diagram for the system

2) Assign all appropriate timing and control constraints to the prototype operators.

Assign latencies to data streams (if required)

3) Assign data types to all data streams

4) Find (in the software base) or build an implementation module for each user-

defined data type and each atomic operator. Modules taken from the software

base can be modified after retrieval to suit individual needs

5) Build the prototype's user-interface (if required)

6) Translate the CAPS-generated (and user-augmented) PSDL program into (a

portion of) the Ada supervisor module

7) Run the CAPS scheduler to generate the static and dynamic schedules. This

completes the prototype's Ada supervisor module

8) Compile the prototype. (Note: for successful compilation, particular attention

must be paid to the formal parameters of atomic operator implementation

procedures created in step 4)

9) Execute, evaluate and modify (if appropriate) the prototype and/or the

requirements

10)Retum to Step 1 if prototype modification is required

The correlation between these 10 steps and Figure 2.2 is obvious. Note that the

basic 10 steps are a bit more detailed than the preceding prototyping process diagram.

This highlights the real-time requirements, and associated design considerations of typical

CAPS prototypes.

21

The remainder of this introduction briefly introduces the CAPS tools used to

perform the basic 10 steps. Note, also, that two of the CAPS tools are outside the

purview of the prototyping process diagram. These tools perform ancillary functions

which are not seen in either the prototyping process diagram or the 10 basic CAPS steps.

These advanced feature tools are the Evolution Control System and the Merger.

The purpose of the Evolution Control System is to provide automated support for

coordinating the concurrent efforts of a team of prototype designers, and to manage

multiple versions of the designs they produce [Bad93]. The purpose of the Merger is to

combine the effects of two or more enhancements to a prototype that have been

independently developed [Dam94].

CAPS can be executed in either the designer mode or the manager mode. The

manager mode provides access to CAPS advanced features, including modification of the

designer pool, creation of project work steps, and prototype change-merging. CAPS

supports distributed prototype development, and the manager interface provides facilities

for such efforts. For simple, single-designer prototype building, the designer mode should

be used.

1. CAPS Tools

This section provides a brief description of each CAPS tool.

ft The PSDL Editor

The PSDL Editor is the heart of CAPS prototype design. This editor

consists of 3 separate parts: the Syntax Directed Editor, the Graph Viewer, and the

Graphic Editor. This tool allows the designer to create the CAPS data flow diagram and

the PSDL program, and assign all timing and control constraints to prototype components

(operators and data streams).

b. The Text Editor

Although the text editor is not exclusively a CAPS tool, CAPS does

provide fluid integration of text editing facilities. Designers can select from vi, emacs and

22

the Verdix Ada Syntax Directed Editor (if available) for editing Ada programs. Use the

"CAPS Defaults" selection under the "CAPS Edit" pull-down menu to make this

selection. The CAPS User-Interface provides convenient file selection lists, based on the

currently selected prototype.

c. The Interface Editor

CAPS integrates TAE+ [Tae93] for creation of window-based user-

interfaces for prototypes. When using the TAE Workbench for creation of such user-

interfaces, the designer must use the "single file" Ada code generation option from within

TAE+. The automatically generated TAE code is placed in the prototype directory in a

file called
<prototype_name>.RAW_TAE_INTERFACE.a.

For details about how to integrate this file into a prototype, see Chapter

VH of the CAPS Tutorial by Brockett [Bro94].

d. The Requirements Editor

The current version of CAPS does not have a sophisticated requirements

tracking or editing tool. Simple text editor integration is provided for editing

requirements documents associated with a prototype. CAPS will automatically present

the user with a list of all files with a " jeq" suffix when "Requirements" is selected from

the "Edit" pull-down menu. After a file is selected, the default text editor will be invoked

on that file.

e. The Change Request Editor

As with requirements, the current version of CAPS does not have a

sophisticated change request tracking or editing tool. Simple text editor integration is

provided for editing change request documents associated with a prototype. CAPS will

automatically present the user with a list of all files with a ".cr" suffix when "Change

Request" is selected from the "Edit" pull-down menu. After a file is selected, the default

text editor will be invoked on that file.

23

/. The Translator

The CAPS translator converts a PSDL program into compilable Ada

packages which implement supervisory aspects of the prototype. The translator expects a

complete PSDL program as input, and creates several packages which make up, in part,

the supervisor module of the prototype. It is important to note that the translator does not

create Ada implementation packages for atomic operators or user-defined data types.

These must be either extracted from the software base, or custom-made by the designer.

g. The Scheduler

The scheduler determines schedule feasibility for CAPS prototypes.

Information is provided to the scheduler via timing constraints from the prototype's PSDL

program. A prototype must be translated before it can be scheduled, and scheduled before

it can be compiled. Upon scheduling a prototype, CAPS provides schedule diagnostic

information which can be analyzed and used to direct timing constraint modifications.

h. The Compiler

CAPS uses the SunAda Ada compiler. The compilation process is

completely automated via the "Compile" command provided in the "Exec Support" pull-

down menu in the CAPS User-Interface. Successful prototype compilation requires the

formal parameter lists of atomic operator implementation modules to conform to CAPS

interface conventions.

L The Evolution Control System

The CAPS Evolution Control System (ECS) [Bad93] is a system that

supports distributed prototype development in a team environment The ECS makes use

of a design database (DDB) for persistent storage of prototype development data. The

ECS supports maintenance of a designer pool from which to draw for prototype

development tasks. Within the ECS, prototype development is modeled as a series of

24

Steps that are created by the project manager. These steps are automatically scheduled

and assigned to available designers.

j. The Merger

The CAPS Merger [Dam94] provides automated prototype change-

merging. Based on slicing theory, as applied to PSDL programs, the Merger automates

the combination of two separate modifications to a base prototype. The Merger detects

and warns of conflicts between the two changes to be merged. If no conflicts occur, or if

they are overridden, the Merger creates a PSDL program for the newly created prototype

which incorporates the changes of each of the modified prototypes.

k. The Software Base

The CAPS software base and its associated retrieval mechanism [Dol93]

provide access to a repository of reusable Ada and PSDL components. The software base

allows a designer to browse as well as query its components. Queries to the software base

can be in the form of keywords or PSDL specifications. In the current release of CAPS,

the software base matching mechanism is based on parameter matching.

E. THE PROTOTYPING SYSTEM DESIGN LANGUAGE (PSDL)

PSDL is a partially graphical specification language developed for designing real-

time systems. It has several facilities for modeling timing and control constraints, but is

also useful for requirements analysis and feasibility studies. It was designed as a

prototyping language specifically for CAPS, to provide the designer with a simple way to

specify software systems [LBY88]. PSDL places strong emphasis on modularity,

simplicity, reuse, adaptability, abstraction, and requirements tracing.

A PSDL prototype is built as an hierarchical structure of components, graphically

represented as data flow diagrams, and augmented with timing and control information.

Each component may contain zero or more definitions for OPERATORS and TYPES,

where each definition has two parts:

25

• Specification part: Defines the external interfaces of the operator or the

type through a series of interface declarations, provides timing constraints, and describes

functionality by using informal descriptions and axioms.

• Implementation part: Denotes what the implementation of the component

is going to be, either in Ada or PSDL. Ada implementations point to Ada modules, which

provide the functionality required by the component's specification. PSDL

implementations are data flow diagrams augmented with a set of data stream definitions

and a set of control constraints.

1. PSDL Computational Model

PSDL is based on a computational model containing OPERATORS that

communicate via DATA STREAMS, where each stream carries values of a fixed abstract

data type. There are several ADTs already built into PSDL; the PSDL_EXCEPTION is

one of them. Modularity is supported through the use of independent operators that can

only gain access to other operators when they are connected via data streams.

The PSDL computational model is formally represented as an augmented graph
[LBY88]

G = (VJEJMJCM)

where:

• V is a set of vertices

• £ is a set of edges

• T(v) is the set of timing constraints for each vertex v

• Qv) is the set of control constraints for each vertex v

Each vertex represents an operator and each edge represents a data stream.

a. Operators

An operator represents either a function or a state machine. When it fires,

an operator reads one data object from each of its input data streams and writes at most

one data object on each of its output streams. If the output depends only on the current

26

set of input values, then the operator represents a function. In other words, the same

response is given each time they are triggered. If, on the other hand, the output of the

operator depends upon the input values and on internal state values representing some part

of the history of the computation, then the operator represents a state machine.

A PSDL operator can be either atomic or composite. Operators that are

decomposed into lower levels are called composite operators, and they represent networks

of components. This decomposition is always functional. An operator that is not

decomposed is called atomic, and in the current version of CAPS, they are implemented in

Ada, but any language could be used for that purpose. According to the PSDL grammar,

it is in the implementation part of the operator that we can declare an operator to be

atomic or composite.

b. Data Streams

Data streams represent sequential data flow mechanisms which move data

between operators. There are two kinds of data streams: sampled streams and data flow

streams.

In PSDL the data trigger of a consumer operator determines the type of a

data stream If the stream is declared in the 'TRIGGERED BY ALL" clause of the

consumer operator, then the stream is a data flow stream. In all other cases it is a sampled

stream.

Data-flow streams in the current implementation are similar to FIFO

queues with a length of one. Any value placed into the queue must be read by another

operator before any other data value may be placed into the queue, or it will overflow.

Values read from the queue arc removed from the queue, and if any attempt is made to

read from an empty queue, it will underflow. Sampled data streams may be considered as

a programming variable which may be written to or read from at any time and as often as

desired- A value is on the stream until it is replaced by another value. Some values may

never be read, because they are replaced before the stream is sampled. As can be seen,

care must be taken when reading values from uninitialized sampled streams. All PSDL

27

data streams contain, at most, one data item at any given time. In summary, it could be

said that a data flow stream guarantees that none of the data values are lost or replicated,

while a sampled stream does not make such a guarantee.

c. State Streams

A CAPS prototype is a well-formed PSDL program if its graph

representation (excluding all state streams) is a directed acyclic graph (DAG). This

restriction may not seem to make sense at first glance. However, when a prototype graph

contains a cycle, this indicates the presence of state information, and states must be

explicitly declared and initialized. PSDL fully supports the integration of states in its

prototypes.

When a state is introduced into an atomic operator, it must be implemented

within the Ada code for that operator, and shouldn't appear in the graph as a self loop

state edge.

d. Types

PSDL user-defined data types are abstract data types (ADTs) which can be

used in CAPS prototypes. PSDL types, like PSDL operators, can be implemented in

either PSDL or Ada. Types can be associated with a set of operators. Types implemented

in Ada are realized by an Ada package that defines a private type and a subprogram for

each operator on that type.

e. Exceptions

Exceptions in PSDL arc values that can be transmitted on data streams of

the type "PSDL_EXCEPTION". During prototype execution, undeclared exceptions are

transformed into PSDL exceptions of the type PSDL_EXCEPTION, which is a subtype of

UNDECLARED_ADA_EXCEPTION. Exceptions can also be raised by explicitly

declaring them in the control constraints part of the PSDL program for the prototype.

28

/. Timers

PSDL timers arc software stopwatches that are used to record the length of

time between events, or to control the duration the system spends in some particular state.

They are declared in the implementation part of a root operator, and are governed by the

control constraints "START TIMER", "STOP TIMER" and "RESET TIMER".

2. Control Abstractions

As a major property of real-time systems, periodic execution, as well as other

timing related attributes, is supported explicitly. The order of execution is only partially

specified, and is determined from the data flow relations given in the enhanced data flow

diagrams, but also affected by the types of data triggers among operators.

There are several control aspects to be specified, such as whether the operator is

periodic or sporadic, the triggering conditions, and the output guards.

a. Periodic and Sporadic Operators

PSDL supports both periodic and sporadic operators. Periodic operators

are triggered by the scheduler at approximately regular time intervals, so that they start

execution somewhere after the beginning of the period, and complete by some deadline,

which defaults to the end of the period. Sporadic operators are triggered by the arrival of

new data, and possibly at irregular time intervals.

b. Data Triggers

Any PSDL operator can have a data trigger, of which there are two kinds,

as illustrated by the following examples:

OPERATOR P TRIGGERED BY ALL X, Y, Z

OPERATOR Q TRIGGERED BY SOME A, B

In the first example, the operator P is ready to fire whenever new data

values have arrived on all three streams X, Y and Z (triggering set), although there may be

other streams coming into the operator P, in which case the data values do not need to be

29

new. This means that the data streams associated with X, Y and Z are data flow streams.

This kind of trigger should be used when the items in a stream represent discrete events

(e.g., transactions on a bank account) rather than samples from a continuous source of

data (e.g., a temperature sensor). This kind of trigger also ensures that the output of the

operator is always based on fresh data for all of the inputs in the triggering set

The most important design consideration when "BY ALL" triggers are

used is management of the firing frequencies of the producing and consuming operators.

The period of the consuming operator must be smaller or equal to the period of the

producing operator, or stream buffer overflow errors will result (i.e., the consuming

operator must fire at least as often as the producing operator). This is because the data

streams in CAPS can hold a maximum of one data item CAPS ensures that if the

consuming operator's period is less than that of the producing operator, the actual firing

rate of the two will be the same (i.e., "BY ALL" trigger data streams are tested for new

information prior to the actual firing of the consuming operator).

In the second example, the operator Q is ready to fire whenever new data

arrives on at least one of the inputs A or B. This kind of activation condition guarantees

that the output of operator Q is based on the most recent data from at least one of its

critical inputs A and B, mentioned after the TRIGGERED BY SOME clause. This is also

a very constrained condition, since the scheduler must guarantee that a new data in A or B

will not be lost

If a periodic operator has a data trigger, the operator is conditionally

executed with the data trigger serving as input guard.

If a data trigger is not satisfied, the values are not read and, consequently,

not consumed from any of the input streams.

c. Execution Guards

The firing of a PSDL operator can be regulated by an execution guard.

Execution guards are conditional statements which are evaluated prior to firing the

associated operator. Execution guards can depend on data from any incoming data stream

30

and they can be combined with the "BY ALL" and "BY SOME" data triggers mentioned

above. Even if an execution guard is not satisfied, the values are read and consumed from

all the input streams, without firing the operator. Examples are:

OPERATOR R TRIGGERED BY SOME X, Y IF X > 20.0

OPERATOR S TRIGGERED IF X: EXCEPTION

d. Conditional Output

PSDL conditional output is implemented in CAPS as guarded execution of

code that writes values to data streams. Conditional output does not affect the firing of an

operator, which will fire in accordance with the CAPS schedule regardless of whether or

not its output is written to an output data stream. The condition of an output guard may

depend on the output values of the operator, on the values read from the input streams,

and on the values of timers.

3. Timing Constraints

Operators can be time-critical or non time-critical, depending on whether or not

they are assigned a value for the maximum execution time (MET) by the designer. If

time-critical, they can be further subdivided into periodic or sporadic operators. Periodic

operators are explicitly assigned a frequency (PERIOD) of execution, meaning that they

will fire within regular periods, exacdy once, but not necessarily at regular intervals of

time. Sporadic operators are not explicitly assigned a period, but they fire whenever there

is new data on a set of input data streams, having, however, a minimum interval of time

between successive firings. Periodic operators can also be triggered by the arrival of data.

However, this trigger will behave like a condition to be checked during periodic firing.

Every sporadic operator has an MRT and MCP in addition to an MET.

Timing constraints are an essential part of specifying real-time systems, and in

PSDL the following timing constraints are supported:

• Maximum Execution Time (MET)

• Period (PER)

31

Finish Within (FW)

Maximum Response Time (MRT)

Minimum Calling Period (MCP)

Latency (LAT)

Minimum Output Period (MOP)

The MET reflects the amount of CPU time that an operator may use for execution,

and is applicable to both periodic and sporadic operators. Note that for atomic operators

the MET complies with the above definition. For the composite operator, however, the

MET is the maximum CPU time needed along any thread of control. Within CAPS, the

MET is assumed to account for the following: data triggering checks, stream reads,

execution guards checks, the execution itself, output guards checks, stream writes, and

exception handling.

This parameter is by itself one of the most difficult to quantify. It is, therefore,

unfortunate that it is also one of the most important parameters employed during the

scheduling process. Two alternatives can be taken: to use the worst-case execution times,

which can result in a poor processor utilization, or to use some value smaller than the

worst-case, which introduces the possibility of an overload. For reasons of safety, CAPS

uses the first approach by defining the MET as an upper-bound on the execution time.

For further reading about execution time issues refer to Leinbaugh [Lei80, LY82] and

Mok [Mok83].

Actually, due to the critical nature of the systems that CAPS was intended to

prototype, the worst-case approach has been used throughout its design. This approach is

observable even in the scheduling model, where the non-preemption option was chosen.

This is because, while it is true that if a non-preemptive schedule can be devised for a set

of tasks, then, it is possible to devise a preemptive one, but the opposite is not always true

[Bla76].

32

The MRT defines an upper-bound on the time between the arrival of new data that

satisfies all data triggering conditions of a sporadic operator and the time when the last

value is written onto the output stream. The MRT applies only to sporadic operators.

The MCP also applies only to sporadic operators, and represents a lower-bound on

the time between two consecutive triggerings of a sporadic operator. It constrains the

behavior of the producers of the triggering data values, rather than constraining the

behavior of the operator itself. Both timing constraints are illustrated in Figure 2.5.

As shall be seen later, each sporadic operator is going to be converted into an

equivalent periodic one, whose period is called the triggering period (TP).

Scheduling delay for a sporadic operator is the interval of time between the writing

into an output data stream by the producer and the corresponding reading of the input

values by the consumer.

New
Data

+ Scheduling''
Delay

TP

New
Data

Mit time finnjinme
chec* writing

data trigger output

MRT

MCP

Figure 2.5. Sporadic Timing Constraints

Periodic operators are triggered by temporal events which must occur at regular

intervals. For each operator, these activation times are determined by the specified period

(PER), which is the time interval between two successive activations. The period applies

33

only to periodic operators. Note, however, that there is a distinction between activation

time and the actual start time of a periodic operator as shown in Figure 2.6.

Temporal

actuation «art tune finish time
, chefk writing

data trigger output

FW

PER

Figure 2.6. Periodic Timing Constraints

Finish within (FW) defines an upper bound on the finish time for a periodic

operator. The difference between the activation time and its deadline is called the

scheduling interval (SI) and it is equal to FW.

Scheduling intervals of a periodic operator can be viewed as fixed windows of a

size equal to FW, evenly separated by the period PER, and whose absolute position on the

time axis is determined by the start time t of its first execution. For the first instance this

time may vary within the closed interval [0.PER] of the operator, and is called the phase

of the operator (Figure 2.7). Scheduling intervals for sporadic operators wfll be covered

in the next chapter, after we discuss how to deal with this type of operator.

34

SI(l)

Tone
Zero

Phase

MET
VW>Mi>M <S|a<fr

f PER

FW *"

PER

Figure 2.7. The Scheduling Interval

The difference between FW and MET is called the slack of the operator. Table

2.1 summarizes the timing constraints for periodic and sporadic operators.

liiii

Maximum Execution Time (MET)

Period (PER)

Finish Within (FW)

Sporadic Operators

Maximum Execution Time (MET)

Minimum Calling Period (MCP)

Maximum Response Time (MRT)

Table 2.1. Main PSDL Timing Constraints

To express the behavior of distributed systems, PSDL provides two timing

constraints. Latency (LAT) and the Minimum Output Period (MOP). The latency of a

stream is an upper-bound on the duration of the time interval between the instant a data

value is written into a stream and the instant that data value becomes available for reading

from the stream. In other words, the latency attribute for a stream is meant to specify an

upper-bound on the allowable time spent by that stream in the network. This information

should be used by the scheduler to simulate the worst case behavior for the delay in the

network. Note, however, that this attribute does not explicitly require that the data

35

carried by the stream should be consumed, within the time interval, by the consumer

operator on the other side of the network. The notation LATxy will be used to denote the

latency associated with the stream between operators Tx and Ty.

The minimum output period is a lower-bound on the duration of the interval

between two successive write events on the stream. In the absence of explicit

synchronization, both the latency and minimum output period of a stream have the default

value of zero (no delay, unbounded data rate). The purpose of these additional constraints

is to declare communication constraints that arise from hardware limitations imposed by

external constraints on how the software functions must be allocated to different physical

nodes of a distributed system Explicit modeling of these constraints is also sometimes

required to ensure feasibility, because latency affects calculations of time budgets, as well

as maximum execution times for composite operators. The effect of these constraints on

static scheduling is that data cannot be read from a stream until a delay equal to the

latency has elapsed, and that data cannot be written into a stream until the minimum

period has elapsed.

4. A PSDL Prototype Example

Figure 2.8 shows a simple autopilot system that illustrates some of the typical

features of PSDL. The example has a minimal specification pan with an informal

description. The implementation pan contains a graph, making the operator Autopilot a

"composite" operator. The figure also indicates maximum execution times, 170 ms for

operator display, 50 ms for operators compass and altimeter, and 75 ms for the remaining

operators. AD operators arc periodic with a period of 500 ms, except for the operator

control_surfaces, which is sporadic, with an MRT and MCP of 900 ms, as it is shown in

the control constraints pan of the PSDL program

Concluding, it can be said that the operator control_surfaces wül be triggered

whenever there is new data in either the course_command or the altitude_command

streams. The operators correct_altitude and correct_course will be triggered whenever

there is new data in the actual_altitude and acrual_course streams, respectively.

36

OPERATOR naopilot
SPECIFICATION

STATES delu_coune:
STATES dda_«ltilude:
STATES denrad_counc:
STATES daind_altitude:

END

IMPLEMENTATION
GRAPH

INTEGER INITIALLY 0
INTEGER INITIALLY 0
INTEGER INITIALLY 0
INTEGER INITIALLY 0

rudder status

170 ms 75 ms

alevator status

DATA STREAM

•cual.eouiie:
■lTinirir_command:

INTEGER.
INTEGER.
(lmidc_caasnind_typc
iMMUM._nwunumi_typc*

cleviior.Buu: clevuor_nmn_iype.
Tuäia_mm: niddcr rau type

CONTROL CONSTRAINTS
OPERATOR •bimaer

PERIOD 500 MS
OPERATOR oorapui

PERIOD 500 MS
OPERATOR ooonoi_iurfKJw TRIGGERED BY SOME count connind. ttaaic oaanad

MAXIMUM RESPONSE TIME 900 MS
MINIMUM CALLING PERIOD 900 MS

OPERATOR eacea thuudc TRIGGERED BY ALL ictu«I_tkmjdc
PERIOD 500 MS

OPERATOR cam cane TRIGGERED BY ALL maitl_eaumt
PERIOD 500 MS

OPERATOR ditpliy
PERIOD 500 MS

END

Figure 2.8. Prototype of an Autopilot

37

38

m. FUNDAMENTAL ISSUES IN REAL-TIME SCHEDULING

A. THE SCHEDULING MODEL AND SOME DEFINITIONS

An instance of a prototype T can be thought of as the union of three disjoint finite

sets, namely the set P of periodic operators, the set 5 of sporadic operators and the set N

of non-time critical operators. Within CAPS, each periodic operator can be described, for

scheduling purposes, as a three-tuple (METX, PER*, FWX), where METX is the maximum

execution time used by each instance of operator X, PER* is its period and FWX is the

length of its scheduling interval. Likewise, each sporadic operator can be described as a

three-tuple (METX, MCPX, MRTX)
sp, where MCPX is the imnimum period between two

consecutive instances of operator X, and MRTX is the upper bound on the time between

the triggering of operator X by some new data arrival, and the completion of writing to all

of its output streams. The superscript SP is used in the sporadic case, only to distinguish

from the three-tuple of the periodic operator. Given any static schedule for a prototype T,

we shall use Su, fix and d« to denote the actual starting time, completion time and deadline

of the i* instance of operator X in the schedule. In any feasible schedule, we must have

0<slx<PERx

and

dix = s,x + (i-l)xPERx + FWx Eq. (1)

for every periodic operator X, where su is called the phase of operator X as defined in

Chapter n. Note also from Eq. 1 that the deadline for the first instance of any operator is

calculated relative to its start time rather than from time zero1. This condition will release

the scheduler from enforcing the condition that the first instance of operator X should

finish by the time PERE. Whenever possible, it is going to be used the letters X and Y to

denote operators, leaving the letters i and j to denote their corresponding instances.

^ime zero is defined as the time when prototype starts execution. In reality it is the start time of the
first operator according to the topological sort.

39

Since, in general, the release time does not affect the complexity of the scheduling

problem [Mok83], it will be assumed that all first instances are released at time zero, but

may be constrained by the precedence relationship between the operators, if one exists.

By definition, every periodic operator must start and finish execution within its

period of activation.

The following restriction is also imposed on the model, where the maximum

execution time must be smaller or equal to the finish-within, which in turn must be smaller

or equal to the period:

MET<FW<PER

Clearly, the first inequality is needed, otherwise there is no way to execute such an

operator within the specified amount of time (FW).

One may want to argue that there is a need to relax the second inequality to PER <

MET < FW. Since PER < MET, such processor demand can only be satisfied using

pipelining in a multiprocessor environment [Luq93, LSB93], which will be discussed in the

next section.

Note that for the sporadic operator all of the above assumptions are also

applicable, since they will be convened into equivalent periodic operators, as can be seen

later in this chapter.

The Harmonic Block (HB) of a periodic task set P is the least common multiple

(LCM) of all the periods in P. It is the interval upon which the task set will be tested for

schedulability. If a feasible schedule can be found within 2xHB, in the case where

latencies are not allowed in the schedule, or in at most 3xLCM if latencies are allowed,

then it is possible to say that the same pattern can be repeated forever. This topic will be

further discussed in Section C

A prototype T is said to be schedulable if there exists a schedule such that the

completion time for the execution of instance i of operator X (f*) is less than or equal to

its corresponding deadline du, for all i and X, and the precedence constraints of the

prototype T are satisfied.

40

The precedence constraint between operators X and Y, written as X < Y, where <

denotes a partial ordering on the execution of tasks X and Y, is satisfied if

V instances ij (i-1) x PER* + su < (H) x PERy + siy

and

(j-l)xPERy +siy + A < i x PERX + su

where (i-1) x PERX = (j-1) x PERy
2 and A equal the maximum time to read input by

operator Y.

Operators from either the periodic set P or from the sporadic set S are non-

preemptable, which means that once they start execution they will run to completion. The

only operators that can be preempted are those belonging to the set N.

No idle time is inserted into the static schedule, unless there are no operators ready

to execute.

All timing information is assumed to be an integral multiple of a basic unit of time,

which within CAPS is assumed to be the millisecond Table 3.1 presents a summary of the

major assumptions of the scheduling model.

For all periodic operators MET < FW < PER
All time-critical operators are non-preemptable

Time is discrete
A periodic operator is completely specified by the tuple
 (MET, PER, FW)
A sporadic operator is completely specified by the tuple

(MET.MCP.MRT)' SP

Static Scheduling is assumed

Table 3.1. Summary of our Scheduling Model

In the next section, a series of theorems on schedulability for a set of independent

non-preemptive periodic task sets will be presented. They will provide the necessary

background to build a framework upon which the later sections of this chapter will be

based.

2 This condition will be relaxed after we present our new synchronization model in Chapter IV.

41

B. CONDITIONS FOR SCHEDULABILITY OF NON-PREEMPTIVE TASKS

In this section, a series of schedulability checks are introduced for a periodic task

set P that has no precedence constraints. These results will be also applied to a set of

periodic tasks with precedence constraints in Section D of this chapter.

1. The Maximum Execution Time Theorem

When dealing with non-preemptive uniprocessor static scheduling a sufficient

condition for unfeasibility occurs whenever a task requires more computation time than

the period of any other task, or more specifically, more than the minimum period among

all tasks. Formally:

Theorem 1:

'Tor an independent periodic task set P, if 3 some tasks X and Y e P, such that

METX >PERy then P is not schedulable in the uniprocessor case by any non-preemptive

algorithm Furthermore, if X = Y then neither the preemptive nor the non-preemptive

algorithms can find a feasible schedule."

Proof:

Clearly, whenever task X executes, task Y, which happens to have a smaller

period, will be blocked for an interval of time bigger than its period, which is contradictory

with the definition of a periodic task. □

Note that the Theorem still holds if precedence relationship exists among the tasks

in P. This same result is also valid for a sporadic task set when METX > MCPy for X = Y

(trivial case). However, for X * Y the situation is slightly more complex, and there are

two cases to consider. The first is when MRTy < MCPy, and it is clearly not schedulable.

The second case is when MRTy Z MCPy, and the set is not schedulable if MET, + METy >

MRTy, as shown in Figure 3.1.

42

Figure 3.1. Theorem 1 for the Sporadic Case

Corollary: (for the distributed case)

•Tor an independent periodic task set P, if 3 some tasks X and Y e P, such that

METX SPERy, then in order for P to be schedulable in the multiprocessor case, tasks X

and Y must be placed in different processors, and if X = Y, then it must be pipelined." □

The conditions imposed on a task X for it to be pipelineable as well as a detailed

description of pipelining in this context, can be found in the work of Luqi [Luq93] and

Luqi, Shing and Brocken [LSB93].
There are two ways to handle pipelining. The first is to use task migration at run-

time, which involves sending a copy of the code and data to be executed in the other

processor. This presents the following problems:

1) It increases the context switching overhead, with direct impact on the timing

constraints

2) There is a need to create an additional task to handle the dispatching of tasks

3) It is not well suited for static scheduling

43

The second approach is to replace the tasks to be pipelined in the other processors

in a pre-processing step. For example, consider a periodic operator OPA(150,100,150)

with inputs Dl, D2 and output D3 as shown in Figure 3.2. As shown in Figure 3.2b, we

can replace operator OPA with two identical operators, OPB(150,200,150) and

OPC(150,200,150), with twice the original period and a state stream syn, whose latency

equals the time taken by the non-overlappable segment of the code implementing operator

OPA. The operators OPB and OPc will be triggered alternately on the value of syn.

Dl D2

PART A

V
D3

PARTB

D3 D3

Figure 3.2. Pipelining Operators

The replication of tasks throughout the system presents the following problems:

1) It increases the memory requirements for the processors

2) It demands highly sophisticated mechanisms for implementing tight

synchronized schedules among the processors, which restricts this approach to

the shared memory models with a global clock

Both of the above discussed methods, however, suffer from the very serious

problem of having to quantify the timing parameters of the segments of code that cannot

be overlapped, which is by itself one of the hardest ones. If those timing parameters could

be known in advance, then the operator could be separated into independent parts, and

pipelining would not be needed.

44

The validity of pipelining in a hard real-time environment is therefore questionable,

and, furthermore, it is impossible to implement in a distributed system where there is no

inexpensive method by which to assure tight synchronization among tasks.

2. The Finish-Within Theorem

Theorem 2:

'Tor an independent periodic task set P if 3 some indivisible task X e P such that

METX > FWX then P is not schedulable under any scheduling algorithm, not even in a

multiprocessor environment"

Proof:

Clearly, if MET* > FWX, the only way to handle this case is if we could split task X

into two or more data independent partitions, so that they could run in parallel on different

processors, but, as stated in the theorem, X is indivisible. □

Note that this theorem can be easily extended to cover the sporadic case when

MET* > MRTX. It is also applicable to the case where we have precedence constraints in

the set P.

3. The Minimum Period Theorems

In the other extreme of Theorem 1, there is a sufficient but not necessary condition

to guarantee schedulability of an independent periodic task set, as stated in Theorem 3:

Theorem 3:

'Tor a periodic task set P, if V tasks X € P, FWX £ PERX and X METX < PERZ
x=l

where PERX denotes the minimum period in P, then P is schedulable." 3

Proof:

The minimum period is certainly a divisor of the least common multiple of the

periods (LCM), and, as such, it can span the entire LCM within an integral number of

Similar result was achieved independently by Zhu, et al. fZLC94] using the concept of critical time
secuon.

45

Steps. It is a kind of sliding bin-packing where a sliding window of size equal to the

minimum period is present and, always large enough to fit all tasks present in that window.

Of course, depending on the periods, all instances may not be active simultaneously in that

specific window. However, in the event that it does happen, the instances will always fit

in there. Q

As shall be seen later, this theorem is valid even when precedence constraints are

taken into consideration.

OP!(-,300,-)
OP2(-,200,-)
OP3(-,400,-)
OP4(-,600,-)

LCM

Figure 3.3. The Minimum Period Sliding Window

It is possible to use a counter example to show that the above condition is a

sufficient but not necessary condition. Consider two periodic tasks with the following

timing constraints: (5,10,10) and (2.5,5,5). The sum of METs is bigger than the minimum

period, but this task set is still schedulable.

What happens if all deadlines are restricted to be less than or equal to their

corresponding periods? In this case it could be said that Theorem 3 is not applicable, as

illustrated by the following example: (3,5,3), (1,10,3).

46

Theorem 4:
n

"For a periodic task set P, if V tasks X € P, £ METX < FWZ, where FW2 denotes
x=l

the minimum FW in P, then P is schedulable."

Proof:

The same idea of sliding bin-packing applies here. Now, however, the size of the

bin must be decreased. In other words, the "bin" now should be understood to be the

least value among all periods and FW, among the tasks from P. □

The next theorem to be presented is the Load Factor Theorem, which is very well

known in the field of scheduling. It defines a necessary condition for the schedulability of

a periodic task set, and it basically stipulates that if the summation of all individual load

factors (MET„/PERX) is bigger than the number of available processors, then the set is not

schedulable [LL73].

4. The Load Factor Theorem

Theorem 5:

'Tor a periodic task set P, if Y ^ x > k, where k is the number of available
^ xti PERx

processors, then the set is not schedulable."

Proof:

A very simple proof is given independently by Zhu [ZLC94] and Jeff ay [JSM91]

for the case where k equals 1. Basically, if both sides of the inequality are multiplied by

the least common multiple (LCM) of their periods, it does not affect the inequality, but

now

n LCM
I METxX——>LCM Eq.(2)

x=l rt.Kx

Clearly, the ratio LCM/PERX defines an integer that represents the number of

instances for each task X within the LCM. If the number of instances of each task is

multiplied by its maximum execution time and the results are then added, the result is the

47

total computation time needed by the entire task set. According to Eq. 2, however, the

total computation time needed is bigger than the LCM. In other words, even if all

instances are executed one after another, they would not be able to finish within LCM.

The case for k greater than one follows automatically. □

It should also be clear from the proof of Theorem 5 that it is valid to both

preemptive and non-preemptive algorithms [ZLC94].

5. The Task Demand Theorem

The following theorem is based upon the previous work of Jeffay, et al. [JSM91]

which established necessary and sufficient conditions for schedulability of an independent

periodic task set in a non-preemptable uniprocessor environment The theorem to be

introduced next is an adaptation for the scheduling model used in this dissertation. It

differs from the original theorem in that Jeffay's model accounts for, tasks that are

independent, there was no explicit deadline for the tasks other than their own period, and

his definition for a schedulable set of tasks required that both conditions in the theorem

should be valid for every concrete task set generated from P, where a concrete task set can

be viewed as the original independent periodic task set P with specific release times for the

first instance of every operator in P.

The inclusion of the deadline which differs from the corresponding period into the

problem made it a lot more complex, since tasks can now finish as early as their MET.

The new results are presented in the following theorems:

Theorem 6:

'Tor an independent periodic task set P, where the tasks are sorted in non-

decreasing order by finish-within (i.e., for any pair of tasks X and Y, if X < Y, then FW, £

FWy), if there exists a feasible schedule for every concrete task set in P, then the following

conditions hold:"

^xtiPERx"1,

48

2) Vx,Kx<n; Vk,0<k<-^^; PER,

£N(y,k x PERX + FWX) x METy < k x PERX + FWX
y=l

3)Vx,Kx<n; VL,FWi<L<FWx;

L^METx + XI N(y, L-l)xMETy
y=l

J(y,L)=.

L
PERy

L
PERy + 1

if LmodPERy <FWy

if Lmod PER, £ FWy

where

and LCM is the least common multiple of all the periods of the periodic task set

Proof:

Condition 1) is basically Theorem 5 for the uniprocessor case. Conditions 2) and

3) together say that for the set to be schedulable, the processor demand in the interval

[OJJ (i.e., the sum of computation times from all instances that must finish in the interval

[0.L]), must always be less than or equal to the length of L. As in Jeffay's work [JSM91],

the contrapositive of Conditions 2) and 3) will be proven. To prove the contrapositive of

Condition 2), consider a concrete set of periodic tasks {Ti, T2,..., Tn) where for 1 < X <

n, the release time of the first instance of Task Tx = 0. Then, for every X, 1 < X <, n, and

every k, 0 < k < -M^-.me processor demand, do,kxPER +FW , from all task instances that
PbKx * *

must finish in the interval [0, kxPERx+FW J is given by

<WER.*W = iN(y,kxPERx+FWx)xMETy
* * y=l

So if Condition 2) does not hold, then there exist an X and a k such that

do.kxPER +FW > kxPERx+FW, and P has an unschedulable concrete set

To prove the contrapositive of Condition 3), consider a concrete set of periodic

tasks {T,, T2,.... Tn) where for some task Tx, the release time of its first instance is T, =

49

0, and for all Y * X, the release time of the first instance of task Ty = 1, as shown in

Figure 3.4.

T2

T,,

Tx

Tx+1

Tn

i

1 , 1 1 , .

1 , 1 ■ 1 . 1 ■ 1 . 1

1
e e

1« 1

, 1 1 , 1 f&

1

1

1
o
o
o

0 1 METX FWX time

Figure 3.4. Different Task Release Time for Task X

Since neither preemption nor inserted idle time are allowed, the first instance of

task Tx must execute in the interval [0.METJ. For all L, FW, < L < FWX, in the interval

[0,L] the processor demand doj., from all task instances that must finish by time L, is given

by

x-1
doa. = METx+ 2 N(y,L-l)xMETy

y=l

So, if Condition 3) does not hold, then doj. > L, and P has an unschedulable concrete setO

Note also that the function N(y,L) can also be expressed in closed form as follows:

N(y,L) = L + min

<

L .1 PERy
FWy + L

PERy xPERy

50

The left hand side of the addition operator specifies how many full periods there

exist for task y within L, while the right hand side specifies whether the remaining fraction

of a whole period is large enough for a scheduling interval (i.e., FWy) of task Y. The

minimum comes into play because if FWy < L/2 < PERy , it would contribute more than

once for the processor demand in the first period, which cannot occur.

As an example consider the task set Ti(8,45,20), T2(9,40,30), and T3(10,100,100),

already sorted by FW.

Clearly, n = 3 and the interval of interest is 20 < L < 100.

Let i = 1, then L = 20, which is the trivial case.

Let i = 2, then 20 < L < 30

for20<L<30, Lmustbe>9 + 8 0

Let i = 3, then 20 < L < 100

for20<L<30, Lmustbe>10 + 8 0

for30<L<65, Lmust be £ 10 + 8 + 9 0

for65<L<70, Lmust be £ 10 + 8 + 8 + 9 0

for70£L< 100, Lmustbe^ 10 + 8 + 8 + 9 + 9 0

If the task set was not approved in all conditions, it could be said that there exist at

least one concrete task, that could not be scheduled. Alternatively, if all conditions were

satisfied, then nothing else could be stated before Theorem 7 is introduced.

Theorem 7:

"If an independent periodic task set P is schedulable according to Theorem 6, then

the non-preemptive Earliest Deadline First (EDF) algorithm will be able to find a feasible

schedule for P."

Proof:

As in Jeffay's work [JSM91] this theorem shall be proved by contradiction.

Assume that a task in P misses a deadline at some point in time when P is scheduled by the

EDF algorithm. Let t<j be the earliest point in time at which a deadline is missed. All

instances of P can be partitioned into three disjoint sets Si, S2 and S3 where:

51

Si is the set of task instances with a deadline at W,

S2 is the set of task instances with an invocation before td and deadlines after td,

and

S3 is the set of task instances not in Si or S2.

Let to be the end of the last period prior to td , in which the processor was idle. If

the processor has never been idle, then to = 0. Since neither preemption, nor inserted idle

time are allowed, all task instances which are executed in the interval [to, td] must be

activated at or after to . Depending on whether the interval [to, td] contains any task from

the set S2, the following two cases exist:

Case 1: None of the tasks in S2 are scheduled in the interval [to, td].

This case only happens if to = 0. Otherwise, we either have an instance that misses

its deadline in the interval [0, to] if to -0 > td - to , or the processor has an idling period in

the interval [to , td], if to-0 < td - to. Furthermore, td <, LCM. Otherwise, we must have

another instance that misses its deadline prior to td.

Let Ta be the task instance that misses the deadline at time td. Then, td - 0 =

kxPER.+FW, for some k, 0 < k < ^^-. The processor demand, do^PERx+Fwx, from all

instances which must finish in the interval [0, kxPERx+FWJ equals

IN(y,k x PERX + FWX) x METV
y=l '

and it is greater than kxPERx+FWx, a contradiction.

Case 2: Some of the task instances of S2 are scheduled to run in the interval [to, td].

Let Tb be the last instance in S2 scheduled to run prior to td in the interval [to, td]

and let t„ be the starting time of T„. The invocation time of all task instances scheduled to

start in the interval [t^+l, td] must be at or after tu+1 and with deadline at or before td,

otherwise the EDF algorithm wül not schedule T* to start at t*. Hence, the process

demand for the interval [t«, td], dtu>t<J, must be bounded from above by the inequality

52

dt. *. < METX + I N(y, td - (tix+1)) x METy a'y y=l

Since there is no idle time in [tu, td], and since a task missed a deadline at td, it

follows that dtixjtd > td - tu-

Let L = td - tu. Then

FW!<L<FWX

and

x-l
L < dtUttd < METX + I N(y, L-l)xMETy

contradicting condition 3 of Theorem 6. O

Note that Condition 3 in Theorem 6 is a sufficient but not necessary condition for

schedulability of a particular concrete task set, as illustrated by the following example.

Consider the task set Ti(100,150,150) and T2(100,300,200). Clearly it does not satisfy

Condition 2, a feasible schedule may still be found if their release times are zero.

However, if the release time of T2 is changed by only one unit of time, then the set is no

longer schedulable.

Jeffay, et al. [JSM91], have shown that the problem of determining whether a

feasible schedule exists for a particular concrete task set is NP-Hard.

C. THE HARMONIC BLOCK DILEMMA

It is a well known and accepted result that the least common multiple (LCM) of

the periods of a periodic task set provides a finite interval of time, for which a cyclic

schedule can be calculated, if one exists, and repeated forever [Mok83].

Many interpret the above statement to mean that a cyclic feasible schedule must

only exist in the closed interval [0.LCM], i.e., a feasible schedule for all tasks instances

that must start in the interval [0.LCM] and complete execution by time LCM. Such an

interpretation holds only if the first instance of every task T» is restricted to complete its

execution by time PER». But what if such a restriction is not desirable? It seems very

53

reasonable to allow the first instance of a periodic task to start within its period of

activation but finish up to the end of the period plus its computation time, and actually this

would be a veiy desirable property, if it could somehow improve the already difficult

problem of non-preemptive scheduling.

Consider the task set Ti(190,600,600) and T2(20,200,200) with the precedence

relation Ti < T2, as illustrated in Figure 3.5.

OP! (190,600,600) < OP2 (20,200,200)

LCM 2xLCM

200

Transient Schedule

soo 1000

Cyclic Schedule

Figure 3.5. The Transient and Cyclic Schedules

Clearly, no feasible schedule exists if the first instance of every task Tx is restricted

to complete its execution by time PER,. However, if it is allowed to the first instance of

every task Tx to start by time PER* and complete its execution by time PER* + MET»,

then a feasible schedule exists. Note also that the cyclic schedule no longer starts at time

zero, but starts instead at time tc, and furthermore, there can be more than one task

instance that does not finish by time 2xLCM, as can be illustrated by the task set

T,(4,100,100), T2(2,5,5), T3(2,100,100) and T4(3,10,10), with precedence relations T, <

T2<T3<T4.

Here is where a novel approach on how to determine what is a suitable cyclic

schedule comes into play. The fundamental concept is that a feasible static schedule

54

consists of two parts: a transient part, which may be empty, followed by a cyclic part,

which repeats forever.

The next theorem, the Harmonic Block Theorem, although different from the one

introduced by Zhu, et al. [ZLC94], was created after a careful analysis of their work,

which does not correctly solve the problem The general direction of the proof will

consist in showing that if the premises of Theorem 8 are satisfied, then there exists some

time tc where a part of the schedule can be divided, with exactly the size of one LCM,

where it is guaranteed that the correct number of task instances are present, and most

importantly, that they all start and finish within that time interval, characterizing the cyclic

part of the new schedule.

Theorem 8: The Harmonic Block Theorem

"If 3 an infinite feasible schedule S without any inserted idle time for a periodic

task set P with precedence constraints, such that the first instance of every task, Tx in P

must start by time PER*, then there exists an infinite feasible schedule S' consisting of a

transient portion of length at most LCM, followed by a cyclic portion of length LCM that

repeats forever."

Proof:

If there is no idling time period in the intervals [0.LCM] or [LCM,2xLCM], then

the given set of periodic tasks P must have a load factor of 1, and the first instance of

every task Tx must finish its execution at or before time Px in any feasible schedule.

Hence, the segment of S in the interval [0,LCM] forms the cyclic portion of an infinite

feasible schedule satisfying the Theorem.

Suppose now that idling time exists in the intervals [0.LCM] and [LCM,2xLCM].

Let U be the end of the last period prior to time LCM in which the processor was idling in

S, and let ti be the end of the last period prior to time t«+LCM in which the processor was

also idling in S as shown in Figure 3.6.

55

latest idle
time

diM
T

M-LCM

latest idle
time

LCM

2xIXM

tc+UM

Figure 3.6. Determining the Start Time tc of the Cyclic Schedule

Assertion (1)

Since no unnecessary idle time is inserted in our schedule S, it should be clear that

there cannot be my first instances of tasks being activated after time tc, because otherwise

they could have started execution before time tc.

Assertion (2)

Another important point to be made is that all tasks which start after time t, could

not be activated before time t,, for the same reasons of non-inserted idle time in our
schedule S.

Assertion (3)

Every task instance that is activated in the interval fo.fc+LCM) must finish its

execution at or before tc+LCM. Suppose this claim is not true. Then there must exist

some instances which are activated before tc+LCM and cannot finish at or before tc+LCM.

Denote the collection of all instances which are activated in the interval [t, , tc + LCM) by

X. It follows from assertion (2) that every instance in x must be activated in the interval
[ti,tc+LCM). This implies that

XMETü> tc+LCM-t,
Ti,et

Let if denote the set of task instances that are activated in the interval [t,-LCM,tc).

It follows from assertion (1) that every task instance in x must have a corresponding

instance in if. Thus Ixl <; 1x1, and £ METix * £ j^
Til«* Tiyex' y Ci)

56

Note that all instances in x' must finish within the interval [ti-LCM,tc], because tc is

the end of an idling period. Hence,

X METjy < tc - (ti-LCM) = tc+LCM-t, (iii)
TiyGt'

From inequalities (i), (ii), and (iii),

tc+LCM-ti < XMETk < tc+LCM-ti,
Tuet

which is a contradiction.

Assertion (4)

All instances after tc are at least second instance and hence, for all tasks Tx within

the interval [tc ,tc+LCM), there must exist jj-^ activations. By assertion (3) they all
PERx J

finish within this same interval. The segment of S in the interval [tc ,tc+LCM) contains the

correct number of instances.

Concluding the proof, it can be said that the intervals [O.tJ and [tcW+LCM] of S

form respectively the transient portion and the cyclic portion of the new schedule S\

satisfying the consequence of the Theorem □

As can be seen, by a proper choice of the start time of the cyclic portion of the

schedule, one can increase the schedulability of tasks sets which were previously assumed

to have no feasible schedule, when the cyclic schedule was restricted to always start at

time zero. Note also that the same approach is valid for preemptive task sets.

D. A NOTE ABOUT PRECEDENCE CONSTRAINTS

Every reference to the word precedence constraints between tasks is usually

attached to the meaning of synchronization, in other words, if two tasks have some kind of

precedence relation, then they must be synchronized. Furthermore, if their periods are

different, then they should be synchronized at intervals corresponding to the least common

multiple of their periods. But then, what is the real need for synchronization if there are

cases where some data may well be lost? Does it exist only to enforce a fixed pattern on

how data are lost, e.g., instances three from task X and two from task Y, six and four and

57

so forth will synchronize? These and other questions will be much further discussed in

Chapter IV.

We shall argue in Chapter IV that the major reason for synchronization is to

guarantee timely processing of triggering data. We shall show that, by relaxing the upper

bound on the delay in processing each instance of triggering data, we can guarantee that,

even without explicit synchronization, each instance of the trigger data will be processed

within an interval equal to two times the period of the consumer operator. The removal of

the need for synchronization is particularly important in distributed systems, where

synchronization mechanisms are very costly if not impossible. It is also desirable not to

have synchronization in uni-processor systems, because now, we can treat each

topological ordering of the tasks satisfying the precedence relationships as a concrete set

of periodic tasks, where the starting time of task Tx is greater than or equal to the sum of

the METy of all tasks Ty that are ancestors of Tx in the task graph.

Note that if non-zero latency is present in the edges of the precedence graph, then

we must further delay the starting time of the first instances of every task Y, so that Siy >

maxfSu+METx+LATxy , Vparent operator Tx of Ty}, where LAT„y denotes the latency

associated with the edge (Tx, Ty).

In order for the arguments in the proof of Theorem 8 to hold, we need to choose U

to be the end of the first idling period after time LCM, resulting in a Modified Harmonic

Block Theorem that reads:

Theorem 9:

"If 3 an infinite feasible schedule S for a periodic task set P with precedence

constraints, such that the first instance of every task, Ty in P must start by time PERy, then

there exists an infinite feasible schedule S' consisting of a transient portion of length at

most 2xLCM, followed by a cyclic portion of length LCM that repeats forever."

Proof:

The main difference when dealing with latencies, is that idling periods may exist

before the starting time of the first instance of some task Tx in the schedule. Theorem 8

58

still holds for this case, because the presence of idling time only affects the release time of

the tasks, as long as PERy £ Siy £ max{ Su+MET^+LAT^}. However, for Theorem 8 in

Section C, the cyclic portion of the schedule may now start after time LCM. The reason is

because the schedule S may contain first instances in the interval [tc, tc+LCM], which was

the key in our previous proof of Theorem 8. After these considerations, the same proof

used for Theorem 8 can be applied to this case. O

E. COPING WITH APERIODIC TASKS

Generally speaking, a sporadic task is defined as an aperiodic task that has a

minimum duration between two consecutive activations. If that was not so, neither the

static nor the dynamic approach could be used to guarantee schedulability.

If interrupts are used to detect the occurrence of aperiodic events at run-time, then

a dynamic approach should be used. However, in the static scheduling framework, where

all the tasks requests must be known a priori, so that a fixed and static schedule can be

generated, the only way to handle sporadic tasks where we do not know exactly when

they are going to happen, is by using a periodic process to function as a polling device. Its

main role is to check for requests of sporadic tasks and to serve them during its allocated

time slot However, due to the random nature of aperiodic processes, we may not be able

to handle a concentrated set of arrivals or even worse, not catch them at all with the

sporadic server approach. To overcome this difficulty, several bandwidth preserving

algorithms have been proposed. Among them could be mentioned the Priority Exchange,

Deferrable Server and the Sporadic Server. [AB93]

The CAPS approach was to use one sporadic server for each time-critical sporadic

operator. This approach, although very restrictive, is the only way to guarantee that all

time-critical sporadic tasks would be serviced in a timely fashion under the worst case

situation.

Therefore, the next step is to convert the sporadic operator into a periodic one so

that all the original timing constraints from the sporadic operator are still satisfied.

59

1. The Conversion

The term triggering period (TP) will be used for the period of the converted

sporadic operator and the usual term FW for its finish-within. As shown in Figures 3.7

and 3.8, basically two cases can occur:

The first is when MCP < MRT - MET and the equivalent periodic operator must

have TP < MCP in order to satisfy the original timing constraints. Also, must enforce that

FW = MRT - MCP, so that in the critical case shown in Figure 3.7, the data that was

missed by the previous triggering period can be consumed by the next TP and still finish

within the original MRT.

Case A
MCP<MRT-MET

New
Dm

TP sMCP
FW sMRT-MCP

SI

MET

l 1 *

Triggering Period FW

MCP "'

MR' r

Figure 3.7. The Sporadic Conversion when MCP < MRT-MET

The second case, shown in Figure 3.8, occurs when MRT - MET <, MCP. This

more constrained situation forces a further reduction in the triggering period. Thus, the

new TP should be TP £ MRT - MET and the FW should be equal to MET.

60

CaseB
MCP>MRT-MET

MCP

Figure 3.8. The Sporadic Conversion when MCP £ MRT-MET

In general, the triggering period should be

MET < TP <, min(MRT - MET, MCP).

Nevertheless, in order to minimize the impact on the load factor of the prototype,

it is desirable that TP be as large as possible, meaning that

TP = min(MRT - MET, MCP).

Now, assuming that the values for TP and FW have been established, so that the

original timing constraints of the sporadic operator are satisfied, let's see what kind of

relations should exist between the original values, so that we could validate them.

Clearly:

• METSMRT (by Theorem 2)

• METSMCP (byTheorem 1) Eq. (1)

• MET£TP (by Theorem 1)

61

• TP < MCP (for static scheduling)4

• MET<FW<TP (Scheduling Model) Eq. (2)
For case A: MCP < MRT-MET

TP = MCP Eq. (3)

and

FW = MRT-MCP Eq.(4)
Plugging (3) and (4) into (2),

MET < MRT-MCP < MCP Eq.(5)
From the right inequality of (5),

MRT<2xMCP

Plugging (1) into the left inequality of (5),

MRT£2xMET

For case B: MRT-MET < MCP

TP = MRT-MET Eq.(6)

and

FW = MET Eq.(7)
Plugging (6) and (7) into (2),

MET <MET £MRT- MET Eq.(8)
From the right inequality of (8),

MRT£2xMET
Also,

MRT-MET^MCP or MRT-MCP^MET

Plugging (1) into the above inequality,

MRT-MCPSMCP or MRT£2xMCP

Therefore the MRT for a sporadic operator must be upper bounded by twice its
MCP and lower bounded by twice its MET, as follows:

, only possible Otherwise we would have to be able to detect at run-time when new data had arrived
with dynamic scheduling.

62

2 x MET £ MRT < 2 x MCP

Note that when MRT assumes its lowest possible value, which is 2 x MET, the

triggering period TP will also reflect its lowest possible value, which is MET, with FW

still being equal to MET. This case is illustrated in Figure 3.9.

Worst Case
MRT=2xMET

MCP

Figure 3.9. Worst Case Situation

Note that in both cases the conversion of a sporadic operator results in very

stringent timing constraints to the equivalent periodic operator. This will definitely have a

great impact on the schedulability of the prototype. In the second case, for example, there

is no slack time for the convened operator, since FW = MET. This forces us to remove

out portions of MET from the schedule, where no other operator could be scheduled.

Of course, the amount of slack time for this operator can be increased by

decreasing its TP, but this will also increase the entire load factor. Basically, there exists a

trade-off between load factor and slack time. How much to increase one in detriment of

the other to increase schedulability is a very difficult question.

63

While this question does not have an answer, it does offer suggestions to help

designers in finding solutions that best fit their needs.

When converting a sporadic operator into an equivalent periodic one, the

triggering period (TP) can range from a minimum of MRT/2, where the slack time is equal

to MRT/2 - MET, up to a maximum value equal to min(MRT-MET, MCP), implying that

the slack time is max((MRT-MET-TP), 0).

TTV, MET MET . . ,.„
First, define load factor contribution as LFC = —— , i.e., the difference

TP TPm»

between the corresponding LF for a specific triggering period TP, and the load factor if

TP were set to its maximum value. Within the interval MRT/2 < TP< min(MRT-MET,

MCP), the slack time ST, which is the scheduling interval for the sporadic task minus its

computation time, is defined as ST = MRT - MET - TP, as can be derived from Figures

3.7 and 3.8.

Clearly, when TP is rn?*imnm, the load factor contribution (LFC) is zero, in the

sense that it cannot be increased any further. For the other values of TP, including those

enforced in the conversions for the previous cases A and B, some considerations must be

taken into account. Assume that MCP £ MRT-MET. Although it may appear at first that

LFC varies with MRT, since TP is lower bounded by MRT/2, that is not the case, in other

words, MRT only limits the valid range for TP. Figure 3.10 shows a family of curves for

different values of MCP, and for a fixed value of MET and MRT. As explained earlier,

LFC is insensitive to changes in MRT.

The load factor contribution LFC, as previously defined, is a function inversely

proportional to the triggering period TP, and that it wül decrease faster for periods less

than TP =VMET , where its first derivative with respect to TP is equal to -Is. Note,

however, that TP cannot be smaller than MET, meaning that TPC will always be located

5 Care must be taken to the fact that the derivative at some point being equal to -1. does not imply
that the slope equals 135° at that point, since both axes may have different scales, as shown in Figure 3.10.

64

to the left of any valid value for IP. The main conclusion is that different values of MCP

have very small effect in the variation of LFC. Similar conclusion can also be drawn for

the case where MCP < MRT-MET. Therefore, in any case, the consequence is that we

always have the full range of TP, from MRT/ 2, up to min (MRT-MET, MCP) to change

TP, without causing any harm to the load factor of the system.

ISO 200 250 300 350 400 450 500 550 600

Triggering Period

Figure 3.10. Effects of TP on the Load Factor

Note that the very first question remains unanswered, but now, the effects in the

total load factor are more clearly understood when the triggering period is changed.

2. Important Remarks about the Conversion

This first idea of conversion of sporadic operators was introduced by Mok

rMok83] in his Lemma 2.3 which stated

"Let M = Mp u M, be an instance of a process model. Suppose we
replace every sporadic process T; = (Cj.pi.dO e M« by a periodic process T'j
= (c'j.p'i.d'i) with c'i= Ci, p'i = min(di-Ci+l, pO and d\ = d. If the resulting
set of all periodic processes M'can be successfully scheduled, then the
original set of processes M can be scheduled without a priori knowledge of
the request times of the sporadic processes in M,.'*

65

Note, however, that although the idea of the transformation is valid, care must be

taken to see the context in which that sporadic operator appears, since some of its

attributes, such as minimum calling period, are totally dependent upon the producer of the

triggering data and not on the sporadic operator itself. In other words, if the producer of

data for some sporadic task is an external event that will be handled by some kind of

interrupt handler, then there will be no influence whatsoever in the generation of the data,

and the minimum period will be obeyed by the external device. However, if the producer

is another task that will be included in our static schedule, it must be assured that two

consecutive instances of the producer operator will not be scheduled closer than the

minimum period specified for the sporadic consumer. In this case, the transformation

alone is not enough, and an additional restriction must be imposed on the producer of the

data. This situation is depicted in Figure 3.11.

In conclusion, it can be said that Mok's lemma by itself does not guarantee that a

schedule really exists for the original set, even if the resulting set of all periodic processes

M' can be successfully scheduled, unless as explained earlier, a restriction is imposed on

the producers as well.

Periodic

©-
(40.600.400)

SI(n-l) = 400

OPi,

Sporadic

(50.550.1000)

I»* SBC

Sl(n) = 400

' OPI

H h

t_f
A<MCP

Figure 3.11. Restrictions on the Producer Imposed by the Consumer's MCP

66

3. Implementations Issues about the Conversion

When implementing this conversion it is strongly recommended that a careful

analysis of the task graph be made to determine reasonable bounds for the period of the

transformed sporadic operator. At first glance, an obvious upper-bound is the value of its

MCP. However, for lower-bounds this choice is not so clear. Nonetheless, it is assumed

that after this pre-processing there will be an interval of possible values for the period of

the transformed sporadic task. The reason for these bounds is to provide us with some

margin for making the conversion, so that the final harmonic block of the entire set is not

increased significantly.

Given a set of sporadic operators, the following steps are suggested for the final

choice of their periods:

1) Set the period of every sporadic task to its upper-bound, so that the total load

factor is minimized

2) Try to find a feasible schedule for the entire prototype (if this is not possible

pick one sporadic task)

3) Start decreasing its period;

4) For each new period check for schedulability;

5) Proceed until its lower-bound is reached. If no schedule is found reset its period

to the upper-bound, pick another task and go back to step 3;

Another possible heuristic is to assign the smallest period among the periodic

operators which is closest to but smaller than the upper-bound of the sporadic operator,

and then proceed with the schedulability tests. One could also try to minimize the

harmonic block. As can be seen, there are several possible heuristics, but there is no

optimal solution. Nevertheless, it is understood that, due to the very stringent timing

constraints resulting from the conversion, every possible attention should be given to this

step.

67

68

IV. DISTRIBUTED SCHEDULING

A. INTRODUCTION

For uniprocessor systems, most scheduling problems involving precedence

constraints can be solved in polynomial time. Lawler [Law73] showed that scheduling

non-preemptable tasks with unit computation times, deadlines, and arbitrary precedence

constraints can be accomplished using the Latest Deadline First Algorithm in 0(n2) time.

Similar results were obtained by Lageweg, Lenstra, and Kan, even for tasks with an

arbitrary computation time, if the release times were assumed to be zero for all tasks.

Blazewicz [Bla76] proved that, for this scheduling problem, a preemptive schedule exists

if and only if a non-preemptive schedule exists. Therefore, in this case, preemption need

not be considered. Blazewicz also demonstrated that the Earliest Deadline First algorithm

can also be used to schedule preemptable tasks. The only scheduling problem involving

precedence relations that has been proven to be NP-complete is the non-preemptable case,

where no restrictions are placed on the release times nor on the computation times. The

non-preemptable case is also NP-complete if there are no precedence relations among the
tasks [GJ77a].

Scheduling tasks with precedence constraints in multiprocessor systems is much

more difficult than doing so in uniprocessor systems. For example, scheduling tasks with

arbitrary precedence constraints and unit computation time is NP-hard both for the

preemptive and the non-preemptive cases [U1175, U1176].

Many researchers have attempted to develop efficient heuristics algorithms to

solve the general problem, but with limited success. In most cases, the researcher ended

up restricting the solution space for specific cases, such as when the task graph is a forest,

or when there are no precedence constraints.

In general, two different approaches to handling distributed computation can be

identified. In the first, the distributed system is coordinated by a single system clock,

which synchronizes all tasks so that computation progresses in a lock-step fashion, and

69

communication between tasks can only occur at specific times. In the second approach,

tasks are synchronized only when necessary, and do so by executing appropriate hand-

shake protocols. The former approach requires less inter-processor communication, but is

rigid, and relies on a global clock whose implementation is by itself another very difficult

problem to solve. The latter approach, although more flexible, dramatically increases the

complexity of the synchronization problem, and may be very costly in terms of

communication, since many acknowledge signals must be exchanged in order to maintain

proper synchronization. The use of rigorous and more constrained riming requirements

allows for the establishment of a weak form of synchronization among the tasks of the

distributed system, and represents an alternative in the middle [Mok83].

B. ARCHITECTURAL ISSUES

This section is not intended to present an in-depth analysis of the effects of the

architecture on distributed scheduling, but merely to introduce some of the problems so

that the reader may be aware of their existence and importance.

In a distributed environment, it is very likely that one will have to deal with

heterogeneous computers, each one with a different clock, different memory systems, and

so forth. It is therefore important to realize how these attributes can affect scheduling.

1. Different Clocks

The precision of a clock is directly related to its granularity, the minimum number

of ticks it can handle, and the quality of its time reference, which is usually based on some

kind of crystal. The first limiting factor imposed by the clock, therefore, is the minimum

acceptable period. This is not, however, an actual limitation, since typical clocks range

from tens to hundreds of megahertz, providing an order of nanoseconds for the minimum

allowable period. The real problem is that clocks can drift among themselves, causing a

variety of synchronization problems. Maintaining an accurate global clock is one of the

most challenging tasks in the distributed processing arena. Usually this is achieved at the

cost of substantial overhead in communications.

70

2. Speed of CPUs

The net result when different processors are present is a different execution time

for the same piece of code when running in the various processors. This factor

necessitates previous knowledge of allocation by the scheduler, so that it can be taken into

account. Within CAPS, this is accomplished automatically, because a kind of simulated

time is used for scheduling, which is scaled according to the speed of the machine on

which it runs.

3. Memory

Issues like cache size, paging, number of pipelining stages, etc., can affect the

overall throughput of the system, and consequently the timing requirements, but hopefully

all of these different delays are already taken into account by the specified maximum

execution time of the task.

4. The Communication Media

This is one of the most important factors in dealing with distributed systems, and

can greatly affect final timing requirements for the application. Note also that the timing

requirements are affected not only by the actual transmission delay, but also by the

operating systems functions invoked on behalf of the applications. In CAPS, for example,

although there is a time-bounded protocol (FDDI) it is still necessary to make calls to the

underlying Unix operating system, which has no support for real-time applications.

5. Interconnectivity

The number of processors, the distance by which they are separated, there abilities

to communicate with one another, etc., are issues that should be raised before tackling the

scheduling problem

C THE PROBLEM STATEMENT

To reiterate, the original objective of this research was to find better methods of

supporting efficient and reliable scheduling of distributed hard real-time systems.

71

It is unquestionable that the ideal real-time distributed system should be able to

support groups of tasks running asynchronously in different processors, each processor

having its own internal clock. An additional goal, despite the precedence relations among

the tasks, would be to eliminate the need for enforcement of any kind of synchronization

required for communication. An even more important goal would be that all the deadlines

and other requirements (such as no loss of data, etc.) could be met.

Being aware of the complexity of the message routing problem described in

Chapter I and reviewing the alternatives presented in Section A, it appears to be that the

best available option to achieve the ideal system is the very last alternative, i.e., to sacrifice

timing constraints in order to decrease scheduling complexity. Unfortunately, that is not

the current trend in most researches in the field of distributed scheduling today.

Researchers are still trying to find better heuristics to scheduling algorithms so that the

timing complexity for a sub-optimal case is decreased by some constant factor. But, due

to the NP-Hard nature of the problem, it is most likely that some restrictions will be

imposed on the initial problem.

This work moves in the other direction, in other words, investigating ways of

restricting or relaxing the timing requirements so as to increase the chances of finding a

feasible schedule. It is understood, however, that, depending on the application, this

approach may not be practicable. It may well be that most of the timing requirements

cannot be changed at all. However, this is most likely untrue for most cases. Especially in

this applications framework, where the user is prototyping the intended system in the early

stages of its life cycle, there is an opportunity to validate and change the system's

requirements, which makes this approach very attractive. Note, however, that this

discussion is not about missing deadlines or employing imprecise computations [LLS91],

but focuses simply on relaxing timing constraints so that no synchronization is needed, and

consequently decreasing substantially the complexity of the distributed scheduling

problem.

72

The next section addresses the underlying semantics behind all possible

combinations of triggering conditions, stream types and operator types within a valid

PSDL program, so that later, when discussing the major synchronization issues, it is

certain that all cases have been covered.

D. SYNCHRONIZATION IN PSDL

There are two kinds of streams in PSDL, Sampled Streams (SS) and Data Flow

Streams (DF). Note, however, that within the former are two semantically different sub-

types of streams, depending on the triggering condition of the consumer operator. If the

consumer operator is not triggered (NT) by any data, then it should be understood that a

specific data value can be lost or overwritten, or even read over and over again by the

consumer, without any harm to the system This type of behavior is very useful when

reading sensor data. In most cases, the sensors will be able to generate data in a much

higher rate than the consumer will read it, but the most recent data is of primary interest.

Even for tracking systems, where the history of data values is very important, this kind of

stream is still very useful Note in Figure 4.1 that a specific value at some previous time t

is not relevant, because the consumer is only interested in the average behavior, so that the

filter algorithm can predict the future position of the target In this kind of situation, no

synchronization is needed, releasing the producer and consumer operators from any

constraints on their periods.

RANGE
D dai produced by the RukrExnaianUnii
■ dm icad by the (yuan

n

TIME

Figure 4.1. Typical Radar Data

73

The second type of Sampled Stream exists when the consumer operator is

TRIGGERED BY SOME (TBS) data value. By definition, the consumer with this

triggering condition should always catch a new piece of data if it is from one of the

streams specified in the TRIGGERED BY SOME clause. For example, if some operator

OP1 is TRIGGERED BY SOME X, Y, then, if new data is coming from either X or Y, it

should be guaranteed to be read, and not lost or overwritten.

Although buffer overflow or underflow is not an issue, due to the way sampled

streams are defined, the only way to avoid loss of data in this case is to enforce the

condition that PER . > PER , and, consequently, the synchronization problem
producer consumer ~ J J r

will have to be handled accordingly.

Finally, in the case of Data Flow Streams, where the consumer is TRIGGERED

BY ALL, the inputs specified in the TRIGGERED BY ALL clause for new data should be

examined, and if all of them happen to have new data in their buffer, they should be

consumed, firing the operator. The TRIGGERED BY ALL condition can be thought of

as being a logical AND among the streams declared in the TRIGGERED BY ALL clause.

Clearly, in this case, there is also a need to enforce PER . £ PER so that no data
' producer consumer

is lost, and once again the synchronization problem must be handled explicitly.

The basic semantic difference between the TRIGGERED BY ALL data flow

streams and the TRIGGERED BY SOME sampled streams is that if for any reason the

data is not consumed and another piece of new data arrives, in the former it will raise a

buffer overflow exception, while in the latter the data will be simply overwritten.

E. DEALING WITH SPECIAL CASES

Data flow streams are currently implemented in CAPS as a FIFO queue of buffer

size one. This imposes an important restriction on the PSDL program, that is, all

producers of data flow streams to some unique consumer should have the same period, or

a FIFO buffer overflow may occur in one of the streams, even if the condition

PERproducer > PERconsumer ^ satisfied (Figure 4.2). This happens because OP1 may

74

write twice before 0P2 outputs some value so that the triggering condition can be

satisfied. This problem usually reflects a possible design error, because it makes no sense

to have an operator being triggered simultaneously by two data events that are produced

with different rates. A possible and recommended solution is to force all producers of

data flow streams to a unique consumer to have the same period.

woo.-) (■.1000.-)

woo.-)

Figure 4.2. Producers with Different Periods

Another important issue is that, although it is semantically correct in PSDL to have

several operators writing to the same data flow stream, or even to the same TRIGGERED

BY SOME sampled stream, as illustrated in Figure 4.3, this case cannot be handled unless

an upper-bound is placed on the number of concurrent copies of a stream in a PSDL

program. This restriction is due to the fact that streams have limited buffer size, and if the

number of copies is very large there is no way to guarantee that one operator will not

write to the stream right after the other, and therefore cause an overflow. In the

uniprocessor case, the only way to handle this problem is by imposing very hard

restrictions on the period of the consumers, so that it will be limited to, at most, half of the

minimum MET of the producers. This result may be seen as an extrapolation to this case

of Nyquist's well known sampling period theorem. Currently, CAPS does not enforce this

condition.

75

Figure 4.3. Potential Overflow Situation

Still, due to the powerful semantics of PSDL, there is another problem to solve,

which is the possibility of the same stream being data flow for some consumers and

sampled stream for others, as illustrated in Figure 4.4. To make things worse, these

streams can even have different latencies.

Figure 4.4. Different Stream Types Combination

Actually, there are some other cases that could also be cleverly checked, so that

users could receive some suggestions and warnings about their design, like for example in

the case illustrated in Figure 4.5, where OPi could have its period increased and

consequently lowering the load factor, since it will not do any good to keep its period

smaller than OP2.

76

Figure 4.5. Period Incompatibility among Operators

As one can expect, the above cases make the validation process of a PSDL

program very complex. For the sake of completeness, the semantic checks and stream

type derivations for all possible combinations of operator types and data triggering

conditions in PSDL are listed in Table 4.1. The actions which should be taken by the

scheduler for each one of those possible combinations will also be presented.

77

-:K?::Type;i|:*OPl:; OP2 Data Trigger X ■Y:'< :?::,:Z'" Action/Check OBS

TC-TC

P P ByAHX,Y DF DF SS If PQPJ < Paulen Error 1
P P BySomeX,Y SS SS SS If POP! £ Poßthen Error 2
P P None SS SS SS "oP2= max(Popi •''ore)
P S ByAllX,Y DF DF SS OP2.upper= min(OP2.upperJ>) 1,3
P s BySomeX,Y SS SS SS OP2.upper = min(OP2.upperJ>) 2,3
P s None SS SS SS Error Cannot be Sporadic 5
S p ByAllX,Y DF DF SS OPl.lower =

max(OPl.lower J>)
1,3

S p BySomeX,Y SS SS SS OPI .lower =
max(OPl. lower J>)

2,3

S p None SS SS SS 5
S s By All X,Y DF DF SS OPI .actual £ OP2.actual 1,4
S s BySomeX.Y SS SS SS OPl^ctual £ OP2.actual 2,4
S s None SS SS SS Error Cannot be Sporadic 5

TC-NTC

P NTC By All X,Y DF DF SS Error: Cannot be Data Flow 1
P NTC BySomeX.Y SS SS SS Error Possible Data Loss 2
P NTC None SS SS SS
S NTC ByAllX,Y DF DF SS Error Cannot be Data Flow 1
S NTC BySomeX,Y SS SS SS Error Possible Data Loss 2
S NTC None SS SS SS

NTC-TC

NTC P By All X,Y DF DF SS Warning: Possible Overflow 1,6
NTC P By Some X,Y SS SS SS Warning: Possible Data Loss 2
NTC P None SS SS SS
NTC S By All X,Y DF DF SS Warning: Possible Overflow 1,6
NTC S By Some X,Y SS SS SS Warning: Possible Data Loss 2
NTC S None SS SS SS Error Cannot be Sporadic 5

NTC-NTC
NTC NTC By All X,Y DF DF SS 1,7
NTC NTC By Some X,Y SS SS SS 2,7
NTC NTC None SS SS SS

Table 4.1. PSDL Data Triggering Semantic Table

LEGEND

TC-Tane-CnocalOpormor

NIC » Noo-Tans-Cmacal Operator

P-PenocbcOpamux/Pmod

S " Sporadic Opetaor

SS - Stapled Stream

DF - Dai Flo» Soon

In Table 4.1, "upper" and "lower" represent, respectively, the maximum and the

minimum values the equivalent period of the sporadic operator can assume. They are

initially set, respectively, to infinite and zero. "Actual" is the value of the triggering period

78

of the sporadic operator after the conversion is done. As can be seen in Table 4.1, in all

TRIGGERED BY ALL cases it is necessary to prevent, or at least give warnings,

whenever the producer operator is faster than the consumer, so that no loss of data or

overflow will be incurred [Table 4.1(1)]. Similarly, in the TRIGGERED BY SOME

cases, this constraint must also be enforced, but in this case the motivation is to prevent

loss of data, since Sampled Streams, by definition, do not overflow [Table 4.1(2)].

When dealing with sporadic operators upper and lower bounds are defined for

their triggering periods, so that later, when conversion of the sporadic operators to

equivalent periodic operators takes place, it is certain that all of these constraints are taken

into consideration [see Table 4.1(3)]. The sporadic to sporadic case (S-S) cannot yet be

handled with upper and lower bounds, since there can be up to five different possible

overlapping patterns for their period interval. Hence, final checking of this case will be

delayed until the equivalent periods have been calculated [Table 4.1(4)].

Another important point to mention is that consumers with no data triggering

condition must be periodic, or an error will be raised [Table 4.1(5)].

Finally, although very unlikely to happen, it should be pointed out that it may

happen, for unexpected reasons, such as a lot of slack time left over from the static

scheduler, that some non-time-critical operator may be fired more than once in the same

Harmonic Block, leading to a possible overflow if they are connected by data flow streams

to time-critical operators [Table 4.1(6)]. This is not a concern among NTCs, since all of

them will be executed consecutively, in other words, between two consecutive instances

of any NTC operator is guaranteed to have an instance of all the remaining ones [Table

4.1(7)]-

Table 4.2 presents all possible combinations of the PSDL timing constraints and

the resulting actions and checks to be performed by the scheduler.

79

SPORADIC PERIODIC OPERATOR TYPE ACTIONS/CHECKS
*::METi: MRT MCP PER ■:V::FW.--: ■

N N N N N NTC
' i i* N S ERROR » H It S N ERROR
M H M S S ERROR
tf N s N N ERROR
** M " N S ERROR
" H " S N ERROR
M tt M S S ERROR
M S N N N ERROR
n H M N S ERROR
N ft H S N ERROR
H M M S S ERROR
M s s N N ERROR
♦» H M N S ERROR
" M M S N ERROR M M M

S S ERROR

s N N N N SPORADIC Auto-Pick MRT and MCP n M H
N S ERROR

*f M H

S N PERIODIC FW=PER
" ** •' S S PERIODIC METSFWSPER

N s N N SPORADIC MCP^MET; MRT=MET+MCP
M M ** N S ERROR (• n M S N ERROR
N M M S S ERROR
M s N N N SPORADIC MRT2MET; MCP=MRT
** t* •* N S ERROR

M M S N ERROR
** " S S ERROR

" s s N N SPORADIC METSMCP; METSMRT
" " •* N S ERROR
" •• • S N ERROR . ** S S ERROR

Table 4.2. PSDL Timing Constraints Semantic Table

LEGEND
N = No» Supplied

S = Supplied

Table 4.2 shows that veiy few combinations of PSDL timing constraints are

semantically acceptable. The only one that deserves some explanation is the case where

only the MET is supplied In this case, the scheduler picks up a pair of values for MCP

and MRT, so that the individual load factor of the sporadic operator is equal to

max((0.75-XLFPER),0.1)
of sporadic operators

80

This approach relieves the designer from having to define timing constraints for

sporadic operators, which might not be clear yet, at that stage of the prototyping, and it

also tries to decrease the timing requirements for that sporadic operator. However, it is

dangerous, in the sense that it will always increase the load factor of the prototype to at

least 0.75, even if the total load factor for all periodic operators was very low.

As is apparent, most of the semantic checks, mainly those related to the control

constraints part of the PSDL program, such as data triggering checks and timing

constraints checks, are left up to the scheduler to implement. It is proposed that in the

future CAPS releases some of these checks are taken from the scheduler and inserted into

the Syntax Directed Editor (SDE), so that the user is not allowed to proceed to the

translation step until he has a valid PSDL program. In doing so, the designer will not have

to come all the way back to SDE if a semantic error is found.

F. TACKLING THE SYNCHRONIZATION PROBLEM

It is clear that the most important issues in dealing with synchronization are the

periods of producer and consumer tasks. However, even in the uniprocessor case, with the

period of the consumer being smaller than the period of the producer, it can be easily

shown that the synchronization is not always a good alternative. Figure 4.6 shows an

example where no feasible schedule exist if synchronization is enforced, but it does exist

otherwise. Three outcomes are possible if the synchronization is not required. First, if the

consumer operator is TRIGGERED BY ALL X.Y , the proposed schedule is valid but X

and Y will be consumed one instance later. If it is TRIGGERED BY SOME X.Y , then

the schedule is always valid, because X and Y do not need to be consumed together.

Finally, if there is no trigger, then the relative order is not important anyhow.

81

(50,500,500)

(50,500,500)

(10,100,10)

with synch

P P P
100 200 300 400 500 600 700

w/o synch

P P P *
0 100 200 300 400 500 600 700

Figure 4.6. Reason for No Synch when PER,„d ^ PER«,,, (Uniprocessor Case)

From another perspective, if PER^^ < PER^^^,men tne streams connecting

them should be sampled streams, because otherwise the data flow streams would

overflow. Since the loss of data is possible("possible" because the data might well not be

produced at all) the consumer cannot be TRIGGERED BY SOME either.

The only case in which PER_,. < PER can be allowed is when there is no ■' producer «ww^r

trigger at all. In this situation, synchronization is not needed, since it would place one

additional burden on the scheduler, and would not solve the problem of loosing data. The

only advantage to having synchronization points in this case is the fact that there would be

a fixed pattern for losing data. Furthermore, by not having explicit synchronization, the

most that could happen is that the consumer operator would read either the previous or

the next instance of the data output by the producer, in other words, at most one producer

period apart.

82

0P2

Periodic Periodic

(70,200,70) (70^00^00)

lost lost lost

OP1
0WJC1)

OP2

10D0 uoo
,f synch

ion

The second possibility is PER,. £ PER r J producer

Hgure 4.7. Reason for No Synch when PER^ < PER«», (Distr. Case)

r. In this case, the synchronization

also does not solve the problem, since it is possible to have two instances of the producer

operator being scheduled, one after the other, causing overflow or loss of data depending

on the triggering condition. This case is illustrated in Figure 4.8.

Periodic Periodic
DF OP1 OP2

(70.500.500)

OP1
9MOC1)

on

_ps9L

(70,200,200)

OVERFLOW

'I
Efn

SOD 1000

synch synch

«00 MB 1X0

Figure 4.8. Reason for No Synch when PERp«» 2: PER«», (Distr. Case)

At first, one may conjecture that no synchronization is needed when PER
producer

H^cotuumer' since it would be possible to catch every single occurrence of data ever

83

produced. However, this conjecture is untrue, due to the fact that the periodic input is not

periodic in the common sense that is understood in electrical engineering and other related

fields, as a pulse that occurs every t units of time!

Figure 4.9. Synchronization among Periodic Operators when FWA = META

If that was so, the period ratio among producer and consumer would be a

necessary and sufficient condition for guaranteeing synchronization, according to the

following argument:

Assuming that PERB < PERA (Eq. (1)) and that the phase of operator A is zero,

there could be two cases:

1st case: start of second instance of B is less than finish of second instance of A

S2B<f2A- Eq.(2)

In this case B just lost A, and therefore it is necessary to prove that the third

instance of B will certainly catch the second instance of A. Formally

S3B<f3A

By the definition of periodic operator, and from Eq. (1),

S2B<SJA

But also,

s3B = s2B.+ PERB

and

s3A = sM + PERAorf3A = f2A + PERA

Eq.(3)

Eq.(4)

84

Plugging equations (1) and (2) into (3),

s3B<f2A + PERA Eq. (5)

Finally, combining (4) and (5),

S3B<f3A □

2nd. case: s^ > f^. Trivial case where the second instance of B will catch the

second instance of A. O

In general, sffl < s^ implies s(i+1)B < s^m and hence, neither loss of data or buffer

overflow can happen.

However, as explained before, this periodic definition is slightly different, in the

sense that it may occur anywhere inside the period slot, invalidating our previous

argument

Within this framework, things are made much more complex, and the

synchronization approach needs to change considerably.

The key question to be answered is: What is the real need for synchronization

between two operators, and when is it applicable? As shown in the previous examples,

the synchronization is not solving the problem and it is placing an additional burden on the

scheduler.

Other question to be asked is:

Can every single piece of data coming from both data flow streams and from

TRIGGERED BY SOME sampled streams be guaranteed to be consumed in a timely

fashion, so that no overflow or loss of data occurs?

The answer is clearly yes, if after scheduling each producer of a data flow or

TRIGGERED BY SOME sample stream, the consumer of that data flow stream, or of

that sampled stream, is scheduled before the next instance of the producer.

In a uniprocessor case, or even in a shared memory multiprocessor model, this

approach is acceptable and easy to implement and guarantee. This, by the way, is how it

is implemented right now in CAPS. However, in a truly distributed case, besides the

85

difficulty in implementing this approach, the lack of a master clock might cause a feasible

schedule to become unfeasible. This assertion may be illustrated with a simple example.

Assume a schedule for a two-processor system that meets all deadlines and

synchronization requirements among their tasks, and that no buffer overflow occurs with

respect to the data flow streams. Now, if clock drift occurs in processor 2, so that one of

its consumers gets shifted more than twice the period of its correspondent data flow

producer, the consumer is guaranteed to lose data, and the schedule will fail.

Therefore, although the uniprocessor and the shared-memory multiprocessor cases

can be handled appropriately, a new approach must be developed for the distributed case.

Ideally, several sets of communicating processes would run independently in each

processor, but with the guarantee that no data would be lost and no deadlines missed.

It will be useful to review the synchronization problem between producers and

consumers. What is the real meaning of missing a deadline within the context of a real-

time system? It means that some process did not generate its output within the specified

amount of time, and therefore the consumer could not consume the data, and so on. What

is important here is that missing deadlines are always attached to data not being generated

or consumed in the proper timing, and this is going to be the key-point in the approach,

i.e., attempting to guarantee that all data being generated is consumed in a timely fashion.

Clearly, the very first condition that must be satisfied is that PERp^,^ £

PER so that no data is lost It also seems obvious at first, that the worst case that

can ever happen is when two consecutive instances of the producer are fired one after the

other, and the consumer is scheduled about two periods apart. Unfortunately this is not

true, as illustrated by the following Figure 4.9.

86

PRODUCER A

Hfl

CONSUMER B

Figure 4.10. The Consumer-Producer Paradigm

Figure 4.10 shows that even with a faster consumer (PERB ^ PERA) one cannot

discard the possibility of having more than one, actually even three occurrences of the

slower producer between two consecutive instances of the consumer. This finding raises

the following additional questions:

1) Under what conditions could that happen?

2) Is there an upper-bound on the number of instances of producers between two

consecutive instances of the consumer? What would it be?

To answer these questions, analyze carefully Figure 4.10.

By construction:

PERA + 2 x META £ 2 x PERB

and

PERB^PERA

By definition of periodic operator

OSMETASPERA

By re-arranging Eq. (1)

PER
METASPERB r-1

Eq.(l)

(Initial Assumption)

87

PER
Thus, PERB must be £ —-— or otherwise META would have to be negative.

Therefore we end up with the following solution interval for PERB:

PERA
<PERB<PERA

and consequently

0 £ META £
PER,

The above inequality answers the first question by showing under what conditions

the situation depicted in Figure 4.10 can happen, i.e., whenever META <
PERA

To answer the second question, let us assume the situation presented in Figure

4.11, where four instances of the producer are attempting to exist in between the same

two instances of the consumer.

PRODUCER A

CONSUMER B

Figure 4.11. Seeking for an Upper-Bound

Eq. (1) now becomes

2XPERA + 2XMETA<2XPERB

88

Now let META = 0, which is the best case possible. This results in PERB > PERA.

But then there is no solution for the set of inequalities, i.e., three is actually the upper-

bound.

Based on these results the following lemmas can be stated:

Lemma 1:

"Given a pair of operators, where one is a producer and the other is a consumer,

and assuming that the period of the producer is bigger than the period of the consumer,

there can exist at most three instances of produced data waiting to be consumed at any

instant of time".

Lemma 2:

"Any produced data will be consumed within at most two periods of the

consumer".

Finally, these lemmas allow the Fundamental Synchronization Theorem, that

will be most useful in the distributed case, but that can be applied as well in the

uniprocessor case.

Theorem 9:

"If there exists a feasible schedule that runs without buffer overflow or loss of data

in a shared memory multiprocessor model, then there can be a distributed and totally

independent schedule, without any kind of explicit synchronization, if the buffer size of the

data flow streams, as well as for the sampled streams with a triggered by some condition

have a size of three."

1. Additional Restrictions Imposed on the Timing Constraints

Obviously, a price is paid for getting rid of the synchronization, and it is reflected

in a more stringent set of timing constraints for tasks.

Looking back at Figure 4.10 it can be seen that the worst case that can happen is

to have some data from a producer consumed after 2 x PERB - METB units of time.

Currently, in PSDL, contrary from the sporadic case, there is no upper-bound on

the time an input data for a periodic operator should be consumed. So, if the consumer is

89

a periodic operator that receives data from network streams, the fact of not using

synchronization, will not impose any additional constraints on their timing requirements.

In the sporadic case however, the explicit upper-bound for consuming the

incoming data is its MRT, which is assumed to be greater than or equal to the latency plus

the MET of the consumer operator for the incoming data. Therefore, an additional

restriction on the triggering period of a sporadic operator must be imposed when it has

any data coming from network streams.

PRODUCER A

IP if

■JIHILM

LAT

CONSUMER B

Knfflj

PERg
-*4

PERß

MR'
*»

Figure 4.12. New Timing Constraints for the Sporadic Operator

From Figure 4.12

2 x TPB + LATMAX £ MRTB

or

_ ^ MRTB LATMAX
1**—2 2~~

which is the new upper-bound for the triggering period of a sporadic operator.

From Chapter DI, Section E, it is also know that TP £ MET. Hence,

90

xyrcT ^TD ^ MRTB LATMAX
METB ^ TPB £

2 2

which is the new formula for calculating the triggering period of a sporadic operator,

under the no synchronization assumption.

G. THE TASK ALLOCATION MODEL

Two basic and unavoidable steps when designing distributed software systems are

the decomposition of the system functions into software processes during the early stages

of the design and, later on, the allocation of these processes to the several processors.

Although sometimes these two steps are used interchangeably, they are very different

activities.

Given the software requirements, the designer must first identify a set of logical

interrelated modules and perform its functional decomposition. This can be done with the

aid of traditional design methods, such as structured and object oriented design. For real-

time systems, such decomposition will require consideration of critical timing constraints

and may require introduction of special modules for synchronization [SW89].

The first major activity is partitioning, which is the mapping of these logical

modules into a set of physical processes. The second is allocation (sometimes called

assignment) which is the mapping of each process to one or more processors. The focus

of this chapter is on allocation; for further reading on partitioning see Shatz and Wang

[SW89].

As shall be seen, task allocation dramatically complicates the already complex

problem of distributed software design, because assigning m processes onto n processors,

there are nm different possible assignments. Optimal allocation is a problem of exponential

complexity, and it was proven to be NP-complete by Mok [Mok83].

The key to process allocation is to establish an allocation model in terms of a cost

function and additional constraints that match the application requirements as far as logical

and timing correctness. The goal is to rmnimize the cost function under the constraints.

91

Most of the cost functions found in available literature deal with performance. Others,

such as those relating to reliability and fault-tolerance, are only now emerging [SW89].

The most widely used performance cost functions are:

1) Interprocessor communication cost (IPC) which is a function of the amount of

data transferred, the network topology and link capacity;

2) Load balancing, which is a measure of how uniform the workload among the

processors is. A good load balancing will maximize the system stability, which

is the capability of busy hosts to receive bursty arrivals of processes without

compromising their deadlines.

3) Completion time, the total execution time including interprocessor

communication incurred by that processor.

The most frequent constraints found in typical real-time systems are due to

hardware limitations of some processors, dependence of some processes on certain

processors, and number of available processors.

The choice of a cost function obviously depends on the application, on the

underlying hardware, and on several other characteristics.

Although distributed processing seems very attractive, one should be aware of the

saturation effect (Figure 4.13) that is sometimes forgotten by many developers. The basic

consequence of this effect is that, contrary to expectations, the throughput doesn't

increase linearly as the number of processors is increased Actually, at some point (which

can be as few as three or four processors) throughput actually starts to decrease.

Examples of this phenomenon are documented by Chu, et aL [CHL80] and by Jenny

[Jen77]. The decrease in throughput is due to the excessive interprocessor

communication, which is similar to the trashing problem in the early memory paging

systems.

92

THROUGHPUT

IDEAL.

ACTUAL

«•(PROCESSORS

Figure 4.13. The Saturation Effect

Basically, all of the different approaches to solve the allocation problem fall into

one of the three major classification areas: graph theoretic, mathematical programming, or

heuristic methods, which are by no means mutually exclusive.

The first of these represents the processes to be allocated as nodes in a graph,

where each edge has a weight that is proportional to its inter-module communication cost

(IMC), with the following remarks: an IMC of zero means that no communication takes

place between those two modules and an IMC of infinity means that they should be

assigned to the same processor. If a imnimal-cut algorithm is performed on the graph one

ends up with the minimum allocation cost for those modules between two processors. In

general, however, an extension of this method to an arbitrary number of processors

requires an n-dimensional min-cut flow algorithm, which quickly becomes

computationally intractable.

The mathematical programming approach uses, in most cases, the non-linear

integer programming technique, where the above problem is formulated as a set of

equations. It is very flexible in the sense that additional constraints can be included in the

model very easily, however it has two short-comings. First, it fails to accurately represent

real-time constraints and precedence relations among the tasks, because both factors

introduce queuing delays into the system in a complex manner [DSWE83].

93

Finally, the heuristic methods, unlike the first two, try to find sub-optimal solutions

for the assignment problem, which are in general faster, more extendible and simpler.

1. Some Basic Definitions

Defining several metrics will provide a better insight into the problem

Average Task MET - given n tasks, it is a lower-bound in the response time;

SMET
METAVG =

n

Average Load Factor - it is a kind of schedulability index that shows how tight the

system is. The bigger it is the harder is to find a schedule. It is independent of the number

of processors, e.g., LFAVG = 0.8 means that almost every operator is very CPU-intensive.

A more precise insight could be obtained by the standard deviation of the load factor.

,MET
LFror= X

LFAVG =

PER

LFTOT

n

Average Processor Load Factor - given the number of processors p, it specifies

the ideal share of processing so that a perfect load balancing is achieved.

PLFAVG = X^
P

Maximum Processor Load Factor - it specifies the maximum load factor each

processor can sustain using the minimum number of processors.

PLF XLFTOT
MAX TlUFrorl

Placement Cost Matrix - it basically shows the cost incurred when operator X is

allocated to processor k. If some task must be placed in some specific processor, its

placement cost should be zero. Otherwise it should be infinity. Other values reflecting the

user's desires can also be used so that the scheduler will have more options when deciding

upon the allocation.

94

Placement Cost Processor 1 Processor 2 Processor 3

Operator A oo 0 4

Operator B 0 oo 7

Operator C 5 8 5

Table 4.3. Placement Cost Matrix

Inter-Module Communication Cost Matrix - it basically shows the cost incurred

when operator X wants to communicate with operator Y, or vice-versa, using the

network. Note that it should be symmetric, since it doesn't depend on the way the

communication is carried out. It simply states that if those two operators are allocated in

different processors, that will be the amount of communication they will have to exchange.

In this case it will also account for the state streams.

IMC Cost1 Operator A Operator B Operator C

Operator A _ 7 13

Operator B 7 - 8

Operator C 13 8 -

Table 4.4. IMC Cost Matrix

Distance Cost Matrix - it takes into account the geographic distance between

processors. For all distances within a local area network, index 1 is assumed. When not

connected, the distance is assumed to be infinite. If passage through additional networks

is required, there wül be an increase of 0.1 for each additional level of networking. Note

that the basic purpose of this matrix is to see if the specified latencies and network delays

are compatible with the underlying hardware architecture.

Distance Cost Processor 1 Processor 2 Processor 3

Processor 1 0 1 oo

Processor 2 1 0 1.2

Processor 3 oo 1.2 0

Table 4.5. Distance Cost Matrix

1 Note that we will be using interchangeably the term IMC and IPC.

95

2. The Approach

The first attempt was to separate tasks according to their data dependency, which

was determined by calculating the several slices of the prototype. Informally, a slice is

defined as the set of possible paths from a sink node (nodes with no output) to a root node

(nodes with no input edges), i.e., a slice contains all ancestors of a sink node. For a formal

definition see Dampier [Dam94]. Clearly, an operator can belong to more than one slice.

Op 1 ,'.| GA \\ , , _

WP-.TVlT:
SinkE SinkD .'.'SinkA \SinkB SinkC

Figure 4.14. The Data Dependency Graph

After all slices are calculated the operators that belong to the same slices are

grouped into equivalent classes, such as GA, GAB, GCDE etc., meaning that they belong to

slice A, slices A and B, or slices C, D, and E, respectively. The resulting graph is the Data

Dependency Graph, which is shown in Figure 4.14. The following algorithm can then be

applied:

1) Pick those operators that belong to two slices. At least one operator must exist

in this equivalence class that has two edges, one for each of the slices it belongs

to. Pick the least expensive edge, i.e., the one with the least IMC cost, and add

the operator to this group. This may later prove to be something less than the

96

best choice, but for now it is the best option available without resorting to the

expensive method of checking the entire slice. The final partition is illustrated

by the dotted line in Figure 4.14, and presents a cost of 117 IMC units. To get

rid of this problem, instead of trying to join in a bottom-up fashion, the most

expensive edge not yet included in any group may be added, and an attempt can

be made to unite both groups, resulting in the following partition: {GA, GABD ,

GAB}, {GABC , Gc}, {ODE , GD}, {GB} and {Ofe}, which has a cost of 56 IMC

units;

2) Keep doing this for the operators belonging to three slices, four, etc., until all

operators have been processed.

3) If the load factor in some set exceeds one or some specified threshold then the

set should be split into two by recursively applying the two-dimensional

minimal-cut algorithm, until all sets have a load factor less than one. Note that

since the min-cut algorithm is trying to minimiye the cost of the edge, it may

well not be an optimal choice for minimising load factor. Checking for load

factor is left until the end because the relative costs of those edges could not be

determined prior to completing the first two steps..

The intended result was to have several fairly data independent sub-graphs that

could be assigned to different processors, having a minimum IPC cost, and, most

importantly, providing a very nice modularization for the system with direct effects on

reliability. For example, if some processor had a problem, only those modules allocated in

that processor would fail. Of course, this approach did not take into account load

balancing, but at least provided a starting point

Unfortunately, after running a partial implementation of this algorithm with several

random generated prototypes, its computation cost proved to be very high and most of the

prototypes ended up having very few slices to start with.

97

After analyzing the advantages and disadvantages of the initial attempt and several

other alternatives, it was decided to use the inter-module communication cost (IMC) as

the main cost function, without taking into consideration any data dependency.

Now it is necessary to come up with a consistent way of assigning the IMC cost to

each pair of operators in a PSDL graph.

Clearly, in the PSDL context, where complex ADTs can travel through the

streams, the amount of data transferred by a stream is variable, and its actual size can only

be known at run-time when the actual prototype is executing. Therefore it is necessary to

use some kind of average or normalized value, so that the deviations are (liminished.

Another assumption to be made (it is actually already part of the PSDL model) is that

every operator, when fired, outputs one and only one value per firing for each of its output

streams. Furthermore, the worst case is assumed, where, once activated, the operator will

always produce an output, even if the data triggering conditions or the output guards are

not satisfied.

The IMC cost, represented as IMC_INDEX, and the actual amount of data to be

transmitted between two operators, denoted as IMC_PER_SEC, are calculated according

to the algorithm described in Figure 4.15.

for each pair of operators loop
if parent operator is TC then

IMC_PER_SEC - coNNEcrrvrry x AVG_PROC_TIME x 1000 / PERIOD.PRODUCER;
elsif parent is NTC then

IMC_PER_SEC := CONNECTIVITY x AVG_PROC_TIME x 1000 / HARMONIC.BLOCK:

end if;
IMCJNDEX ~ IMC_PER_SEC / NORMA1JZED_IJOAD_FACTOR

end loop; _____ —

Figure 4.15. Algorithm for Calculating the IMC Cost Function

Note that in order to quantify and compare IMCs it was necessary to fix the time

window for measurement and the second was chosen.

AVG_PROC_TIME is the estimated average time in microseconds taken for that

system to output a typical PSDL stream to some buffer, which will be later transmitted to

98

the network. Note that this parameter is innocuous, since it is a constant for every stream.

The only reason to maintain the parameter is to make the resulting index more realistic.

CONNECTIVITY is defined as the number of streams connecting two operators

including the state streams.

The ratio 1000 ms/ PERIOD (ms) for the time-critical operator specifies the

number of periods that occurs in one second, that is, the number of times the producer will

fire. For the non-time-critical operator the HARMONIC BLOCK (HB) is used as if there

was only one occurrence of the NTC operator in each HB.

Finally, for the IMCJNDEX the NORMALEED_LOAD_FACTOR is

introduced, defined as:
(LOAD_FACTOR PARENT + LOAD.FACTOR CHILD) / MAX_LF_PER_PROC

Note that the above formula is valid for any case except when both operators are

NTCs. In this case the formula is changed to:

((1.0 - MAX_LF_PER_PROQ + (1.0 - MAX_LF_PER_PROQ) / MAX_LF_PER_PROC

or

(2.0/ MAX_LF_PER_PROQ - 2.0

The rational behind these formulas is that if there are two small LF operators

connected by a stream with some IMC_PER_SEC, the IMCJNDEX or, rather, the

relative cost for placing them in different processors should be much higher than if they

had big load factors, for a same IMC_PER_SEC value. For streams connecting two NTC

operators that don't have an explicit load factor, since they don't have periods nor METs,

the remaining load factor will be used. In other words, 1.0 - TOTAL.LF, as if it was the

load factor. If the load factor is bigger than one, then there must be more than one

processor, so that the maximum average load factor per processor is used instead,

assuming that the minimum number of processors is available.

Although it is not used in the current implementation, it seems to be a good idea to

divide the remaining LF among all NTCs operators. This way it would be less costly to

split two NTCs, where the total load factor of the prototype is 0.8, than to split two TC

99

operators both with load factors 0.2. In the current implementation, both cases have the

same cost.

3. The Current Implementation

As the very first step, the allocation algorithm builds a priority queue of edges in

decreasing order of inter-module communication cost (IMCJNDEX), which were

previously calculated Note that it will contain all edges in the prototype and not only

those connecting time-critical operators.

Once the priority queue exists, each operator is allowed to form a set by itself.

Next a union-find algorithm is applied, so that if the origin and destination operators of the

edge being examined belong to different sets, they are united (as long as their combined

load factor is still under some threshold previously established by the user).

begin--allocate
- Build a priority queue of edges in decreasing order of IMC INDEX
BUILD_PRI_QUEUE(CX)UNT);
- Let each operator form a distinct set by itself.
for I in l..NEW_GRAPH_PKG.ARRAY_SrZE loop

OP := NEWJ3RAPHJ>KG.RETURN_OP(I);
OP_UNION_FIND_PKG.CREATE(OP_LINK(I),OP);

end loop;
while IMC_PRIORnT_QUEUE.NON_EMPTY(PRI QUEUE) loop

EDGE:=IMC_PRIORrrY_QUEUEJlEAD_BEST(PRI QUEUE);
ROOT_A := OP_UNION_FIND_PKGJ=IND(OP LINK (EDGE.ORIGIN));
ROOT_B := OP_UNION_FIND_PKGJTND{OP_LINK (EDGE.DEST));
if not OPJJNION_FIND_PKG.eq (ROOT_A, ROOT_B) then

if ROOT.AU + ROOT.B LF <, ALLOCATIONJACTOR then
ROOT.C := OP_UNION_FIND_PKG.UNION(ROOT_A. ROOT_B,

ALLOCATION_FACTORJ;
end if;

end if;
rMC_PRIORITY_QUEUEJlEMOVE_BEST(PRI_QUEUE);

end loop;
end allocate;

Figure 4.16. Partial View of the Allocation Program

As can be seen, the current approach is a kind of first-fit bin-packing, where the

size of the bin is dictated by the ALLOCATION FACTOR specified by the user. A very

100

simple modification which would allow a better load balancing is to substitute the

ALLOCATION FACTOR by the AVERAGE PROCESSOR LOAD FACTOR of the

prototype, multiplied by some number, for example, 1.1, to allow some variation around

the average. In doing this, it is being enforced that all processors will get an even load,

despite of an increase in the communication cost. Other checks could be applied as well,

such as checking the requirements or the placement cost matrix to see if the operators

could be allocated to the same processor, or if they needed to be in a specific processor.

The slices they belong to could also be examined, so that even if the load balancing rule is

not completely satisfied they could still be assigned to the same processor if they were in

the same slice. As can be seen, there are an enormous number of possibilities for cost

functions. However, finding the one that best fits the application requires a great deal of

fine tuning.

The union-find data structure has been implemented as an in-tree, where the nodes

can have many children, therefore, after all the sets have been formed, we need an 0(n2)

worst case algorithm in order to retrieve their members. Another way to implement it that

would make the retrieve operation much cheaper is by using a double linked list, but then

the insert operation would be a little bit more expensive. In both cases, the union-find

algorithm could be enhanced by adding path compression and balancing into the

implementation, resulting in an 0(mlog n) time algorithm, where m is the number of edges

in the graph.

Finally, the allocation algorithm outputs a set of sets, i.e., a set where each of the

components is another set containing the nodes in that partition. Although not included in

the current implementation, it should ultimately output a map instead of a set, where each

of the partitions would be mapped to a specific processor, according to the requirements.

101

102

V. ARCHITECTURAL ISSUES OF THE CAPS SCHEDULER

Section A of this chapter describes several issues related to the architecture of the

CAPS scheduler in its current uniprocessor implementation. Section B presents a novel

architecture for dealing with the distributed scheduling case. The remaining sections of

this chapter contain a proposed implementation, first using the current available

technology and then using the upcoming facilities offered by Ada95. It is important to

note, however, that while implementing the distributed system in Ada provides a uniform

environment for building prototypes, it suffers from the disadvantage that tasking and the

new distributed systems support in Ada95 are not time-bounded. Hence, in order for the

distributed Ada prototype to satisfy the timing constraints as specified, the average

behavior of the underlying host operating system and the network communication sub-

system must be relied upon.

A. THE CURRENT SCHEDULER - UNIPROCESSOR ARCHITECTURE

Currently, CAPS is a development environment, implemented in the form of a

collection of tools, that are linked together by a user interface. The prototyping process is

accomplished by running several tools independently, one after the other, so that their

output taken together make up the final Ada program, which will implement the

supervisory control of the prototype.

More specifically, the translator converts the PSDL program defined by the user

into compilable Ada units. During this process, it creates the following five major

packages: exceptions, instantiations, timers, streams, and drivers, all preceded by the name

of the prototype followed by an underscore. Ultimately each of these will become pan of

the prototype supervisory Ada program.

The first three of these packages contain all of the user declared exceptions,

generic packages and timer instantiations defined in the PSDL program. The package

streams contains the instantiations of all the streams used by the prototype, which are

implemented as Ada generic tasks contained in the generic package PSDL_STREAMS,

103

which contains all stream types supported by PSDL. A partial view of the supervisory

program for the Patriot Missile prototype is shown in Figure 5.1.

package PATRIOTJEXCEPTIONS is
— PSDL exception type declaration
type PSDL.EXCEPTION Is (UNDECLARED_ADA_EXCEPTION);

end PATRIOT_EXCEPTIONS;

package PATRIOTJNSTANTIATIONS is
— Ada Generic package instantiations

end PATRIOTJNSTANTIATIONS;

withPSDLJIlMERS;
package PATRIOT_TIMERS is

— Tuner instantiations
endPATRIOT_T!MERS;

— with/use clauses for atomic type packages
— with/use clauses for generated packages.
with PATRIOT_EXCEPTIONS; use PATRIOT.EXCEPTIONS;
with PATRIOTJNSTANnATlONS; use PATOOTJNSTANTTATIONS;
— with/use clauses for CAPS library packages,
with PSDL_STREAMS; use PSDL.STREAMS;

package PATRIOT.STREAMS is
— Local stream instantiations
package DS JNTERCEPT_ANGLE_CX)NTROL_PATTUOT is new
PSDL.STREAMSJTPOJUFFERCFLOAT);
package DS_LAUNCH_ANGLE_LAUNCH_PATRIOT is new
PSDL_STREAMS-FffOJ*UFFER(FLOAT);
package DS_LAUNCH_STATUS_SCUD_RADAR is new
PSDL_SriTlEAMS^AMPLED_BUFFER(LAUNCH_STATUS_RECORD);
package DS_LAUNCH_STATUS_DISPLAY_SCUD is new
PSDL_STREAMS^AMPLED_BUFFER(LAUNCH_STATUS_RECORD);
package DS_LAUNCHER_POSraON_SCUD_RADAR is new
PSDL_STREAMS^AMPLED_BUFFER(FLOAT);
package DS_MISSILE_TRACK_CHECK_THREAT is new
PSDL_STREAMS.SAMPLEDJ*UFFER(TRACK);
package DS_SCUD_STATUS_DISPLAY_SCUD is new
PSDL_STREAMS.SAMPLED_BUFFER(MISSILE_STATUS);
package DS_SCUD_TRACK_DISPLAY_SCUD is new
PSDL_STREAMS^AMPLED_BUFFER(TRAC3C);
package DS_TACnCAL_STATUS_DlSPLAY_TACTICAL is new
PSDl^STREAMS^AMPLED_BUFFER(MISSILE_STATUS_RECORD);

package DS_TARGET_RANGE_CX)NTROL_PATRIOT is new
PSDL_STREAMSi:iFO_BUFFER(FLOAT);
— State stream instantiations

end PATRIOT.STREAMS;

Figure 5.1. Partial View of PatrioLa

104

CuiTently, CAPS implementation supports only the sampled streams where data

can always be written and read, the state streams, which are basically a sampled stream

with an initial value, and the data flow streams, which are implemented as a FIFO buffer

with size one. The streams are implemented as individual Ada tasks with entries such as

READ, WRITE and CHECK, whose implementation will vary according to the type of

stream.

Finally, the package drivers basically contains all of the data declarations, the data

trigger checks that control whether a stream should or should not be read, the execution

trigger checks that decide whether or not to fire the operator, and the output guard

checks, which will allow whether or not an output is to be written to the output streams.

Each of these checks are implemented in the following way:

1. Data Triggers

If an operator has no triggering condition at all, its input streams will be read

whenever the operator is fired, but they will never generate any overflow or underflow

exceptions. Similar situation happens when the streams are state streams.

If at least one of the incoming streams is a TRIGGERED BY SOME sampled

stream, then the streams will be read whenever one or more of the streams in the

TRIGGERED BY SOME set has new data, but again, they will never generate an

underflow exception. Because of this, care must be taken with respect to the very first

reading of data from sampled streams, since garbage may be consumed.

105

OPERATOR trijamd.by.icm
SPECIFICATION
END

IMPLEMENTATION GRAPH
DATASTREAM

■anaciflaat,
mtttjd: INTEGER

CONTROL CONSTRAINTS
OPERATOR Upittejnck TRIGGERED BY SOME

OPERATOR Ra<kr
OPERATOR
OPERATOR

END

■«CMtot UPDATB_TRACKJ)RIVBR It
LVJUTTTUDE: FLOAT;
LVJIANGB: FLOAT;
LV.TARGETJD: INTEGER;
BXCTPTION.HAS.OCCURRBD: BOOLEAN m FALSE;
EXCEPTION.!!): PSDLJBXCBPnON;

hagta
- Data aigger cfaedo.

if sot (DS_ALTTrUDE_UPDATE.TRACKNEWJ)ATA <* <te DS_RAN<ffl.UPDATB.TRACXNBWJ)ATA) H

DS^LTITUI»JJPDATBjrRACK3in*«RJ»EADaVJU.TrrUDB);

«ken BUFFER_UNDERFLOW K>

DSJ»BU03UFPBR_UNDERFU>Wr ALTrrUDE_UPDATE_TRACK-. -UPDATB_TRACKT;

aattai

DSJlANOE_UPDATB_TRACKBUFFHRJ(EArXLVJlANOB);

«*
*aaBUFFER_UNDERFLOW«>

DS JMBU03UFPER_UNDERPLOWOlANOE_UPDATE_TRACr. ■UPDATB_TRACD;

DSJTAR<arr.lD.UPDATB.TRACXJUFPERJ»EADaV.TAROBT.ID);

«*•■ BUFFBRJUNDERFLOW K>

DSJ)BBlX33UPFER.UM3ERPLC«rrARCOTJD.UroATE.TRACK-.TTOATC.TRACin:

«■■lilwii check.

«••'UPDATE.TRAaUXJVBR;

Figure 5.2. TRIGGERED BY SOME Implementation

If at least one of the incoming streams is a data flow stream, in other words, has a

TRIGGERED BY ALL condition, the streams will only be read if the data flow stream

has a new value in its buffer, and any attempt to read an old value from a data flow

stream, wül generate an underflow exception. As shown in Figures 5.2 and 5.3, the read

operation is actually a call to rendezvous with the READ entry of the incoming stream
task.

106

OPERATOR trinmdjyjD
SPECIFICATION
END

IMPLEMENTATION GKAPH
DATA STREAM

Almn: Bodbin,
i: INTEGER,

t: FLOAT
CONTROL CONSTRAINTS

OPERATOR Oveq_Caim>l TRIGGERED BY ALL

OPERATOR ToqiJUnm
OPERATOR T«q>_Seo>or
OPERATOR Input_Keyp»d

END

pracadui* OVEN_CONTROL_DRJVER U
LV_ALARM: BOOLEAN;
LV.COMMAND: INTEGER;
LV.TEMPBRATURB: FLOAT;
BXCBPTK)NJUS_OCCURRED: BOOLEAN:» FALSE;
EXCEPTIONJftPSDUXCEFTION;

— Data trigger dBcks.
r aot (DS_TEMPERATURB_OVEN_C0NTROLNEWJ>ATA ud UMB

DSJkLARM_OVEN.CONTR0LNBWJ)ATA) üxa

•adK

tafill
DSJUJUtM_OVEN.CONTROUBUFPERJtEAD(LV_ALARM)-.

whtB BUFFER_UNDERFLOW s>
DS J)BBUOJUPPER_UNDBRFLOW(-ALARM.OVBN_CONTROLa. "OVEN.CONTRCl.-);

DS_a>MMAND_OVEN_CONTROL3UFPERJ(EAD(LV_COMMAND);

wk«a BUFPER.UNDERFLOW »
DSJ)GBUaJUFPER_UNDERFLOWrCOMMAND_OVEN_CONTROL',

■OVEN_CONTROL-);

DS_TEMPERATURE_OVEN_C»rrROL3UFreRJlEADaV.TEMPERATURE);

w*m BUFFER_UNDERFLOW «>
DSJ)EBUaBin,FER.UNDERFLOW('rEMPaRATURE_OVBN CONTROL".

•OVHN.CONTR0L-):

- Eraprioe Cawiaäa Pwlirift».
-OdKreona

-PSDLI
•d OVEN.CONTROL JJRIVER:

Figure 5.3. TRIGGERED BY ALL Implementation

2. Execution Triggers

The execution trigger is where the actual program that implements the

functionality of that operator, which is provided by the user, will be called if the conditions

are satisfied. These conditions come from the TRIGGERING IF pan of the PSDL

program. Note that even if they are not satisfied, the data has already been consumed, and

is therefore marked as old data.

107

OPERATOR mjjmdjf
■TECmCATION
BND

MTLSfENTATION GRAPH
DATAITREAM

 i-wmw
-1—-»""

COnXH. CONCTRAINTl
anRAT0RO*ai_Cmd TRIGGERED BY il

OFKRATOR TvpJUfln
OPERATOR T^ locr
OPERATOR tjaJUtp*

END

■ TRUB

V ((LVjrQOBLATUXB:-100.0) m <LV>UUtM-m»)) |

OVBN.CGNTRGUALAKM ■» LVJtLAUI.
CGHUAND^LV COMMAND,
TBOBRATUXB->LV.TBOBIA'naE);

n J»UO.UNDBCLAKBDJUJU!PI UNTOVBN_OONT«OCT,
rempi «JH_HA»_OCCURKBP • OK
HUW1XJNJD * UNDBOARBDJtDA.BXCHP'nDN;

Figure 5.4. TRIGGERING IF Implementation

3. Output Guards

Finally, the output guards are checked. If the conditions are satisfied, a

rendezvous with the output stream tasks is requested by calling their WRITE entry.

OrOIATOtt
mnncATON

■ffLBMBNTATKMORAni
DATAITREAM

AkB: KXXBAN.
V^m: FLOAT.
•^Mnd: VI lUUUK.
^na FLOAT

C0NT1OL CCfOTKAlKn
OPBIATOR H«_Bhmaa
crnATot *u jLwrr*
OPERATOR Os.Cnl

■■<— Im
OUTFUTVaMn FOB

TUOOBtBDIYAU.

OPERATOR Ta

■•tfBccxrnaNjtu.ocajusDta
V 0.V.COMMAND- I) M

M.WXTAOB_HBATJ»ÄO»ITJUrFSlW»jrB(LV_VOLTAaF4.

■■■ MJPPBR.OVEIPLOW 9
Di _DB>UO RUPlTR_OVBtPLOW(-vatTAaB_HBAT.ELEMENT. TyVBN.CONTROO.

Figure 5.5. Output Guards Implementation

108

Besides these packages that are generated by the Translator, there are another two

packages generated by the Static Scheduler and by the Dynamic Scheduler. When

consolidated by one of the CAPS scripts, they will form the so called prototype

supervisory program, receiving the name of the prototype followed by a ".a" extension,

which stands for an Ada program.

Exception Declarations
Generic Instantiations
Timer Instantiations
Data Stream Instantiations
Operator Drivers

CAPS
Support Packages

while true loop
call non-time-critical operator drivers;

end loop;

while true loop
call time-critical operator drivers;

end loop;

Dynamic Schedule
Task Package

Static Schedule
Task Package

procedure prototype_name is
begin

init_hardware_model;
start static schedule;
start dynamic schedule;

end prototype jiame ;

Main Program

Figure 5.6. CAPS Supervisory Program Structure

CAPS is composed of four major Ada tasks with the following priorities, as

defined in the package PRIORITY.DEnNrnONS:

1) Debugger Task - it handles all CAPS debugging tools used during prototype

execution, and has the highest priority within CAPS, which is 4

2) Stream Tasks - each stream is implemented as one Ada task with priority 3

109

3) Static Scheduler Task - it is responsible for calling all the timing critical

operators, according to the static schedule. The TC operators will be called in

a non-preemptive way, so that each instance of an operator will execute to

completion; being preempted only by the debugger task, or during operations

with the stream tasks. It has a priority of 2. Note that, although the stream

tasks have higher priority, they are called (synchronized) by this task, so that

there will be no problems such as another stream from another operator trying

to gain control of the CPU.

4) Dynamic Scheduler Task - it is assigned the lowest priority (priority 1) within

CAPS, and it handles all the non-time critical operators of the prototype. They

wfll run in a pre-defined order established by the dynamic schedule, whenever

there is idle time in the static schedule. The NTC operators, due to their low

priority, can be preempted by any other task and, as a matter of fact, they are

not even guaranteed to run at all. This problem of unbounded blocking will be

addressed later on.

B. THE PROPOSED DISTRIBUTED ARCHITECTURE

In the uniprocessor case, the translator had no information about the output of the

scheduler. For the distributed case, however, this information is crucial, since it will have

to generate different Ada units for each of the processors involved in the prototyping.

Once the scheduler has generated the different partitions, defining which operator

belongs to which partition, the translator will have to be called, so that it can generate as

many supervisory files as the number of partitions. It is suggested that the prototype name

followed by the partition number be used as the naming convention for the supervisory

files, eg. PATRIOT.l.a, PATRIOT_2.a. and so on.

The following information should be passed by the scheduler to the translator, so

that it can perform its job:

1) Number of partitions and a list with the operator names belonging to each

partition

110

2) Mapping from partitions to processors according to the requirements

For the sake of simplicity, it is assumed that there is a homogenous cluster of

processors, so that a configuration of partitions is not needed. The process of mapping

the partitions of a program to the nodes in a distributed system is called configuring the

partitions. Note, however, that even after having abolished condition 2, there is still a

need to provide the translator with the name of the processors. It is suggested that this

information come from the CAPS interface.

Once this information is available to the translator, it should generate a supervisory

file for each partition, exactly as it did for the uniprocessor case, except for the following

differences:

1) In the new package streams, where the streams are instantiated, if a specific

stream is going to some operator external to that partition, and only in that

case, it should be hard-coded as an instantiation of a special and newly created

kind of stream, i.e., the network stream. Note that this stream has only one

entry, which is writeexternal, considering that all reads will be to local

streams. Certainly, the package PSDL_STREAMS will have to be totally

changed to conform with the new model for distributed scheduling without

synchronization, which requires a buffer size of three for the network streams.

Another modification made in this package relates to the sampled streams,

which are now divided into two groups, non-triggering (NT) and TRIGGERED

BY SOME (TBS), since they have quite different semantic behaviors. Figure

5.7 shows the specification of the new package containing the stream tasks.

Ill

with PRIORITY DEFINITIONS;
use PRIORITY_DEFINITIONS;
packagePSDL.STREAMS is

BUFFER_OVERFLOW: exception;
BUFFER_UNDERFLOW: exception;

-Impleinents a buffer with size 1, for sampled
- streams with no triggering condition (NT)
generic
type ELEMENT_TYPE is private;
package NT_SAMPLED_BUFFER is

task BUFFER is
pragma PRIORrTY(BUFFER PRIORITY);
entry READ(VALUE: out ELEMENT TYPE);
entry WRITE(VALUE: in ELEMENTJTYPE);

end BUFFER;
end NT_SAMPLED_BUFFER;

-Implements a buffer with size 3, for sampled
- streams that have triggering "BY SOME"
- condition (TBS)
generic
type ELEMENT.TYPE is private;
package TBS_SAMPLED_BUFFER is

task BUFFER is
pragma PRIORnY(BUFFER_PRIORITY);
entry CHECK(NEW_DATA: out BOOLEAN);
entry READ(VALUE: out ELEMENT TYPE);
entry WRITE(VALUE: in ELEMENTJTYPE);

end BUFFER;
function NEW.DATA return BOOLEAN;

end TBSJSAMPLED.BUFFER;

- Implemenli a buffer with size 1, for state streams
- that have no triggering condition (NT)
generic
type ELEMENTJTYPE Is private;
INITIALJVALUE: ELEMENTJTYPE;
package NT.STATE_BUFFERis

taskBUFFERIs
pragma PRIORITY(BUFFER_PRIORrTY);
entry READ(VALUE: out ELEMENT TYPE);
entry WRITE(VALUE: inELEMENTJTYPE);

end BUFFER;
end NTJSTATE.BUFFER;

- Implements a buffer with size 3, for states streams
- that have triggering "BY SOME" condition (TBS)
generic
type ELEMENT TYPE is private;
INrriALJVALUE: ELEMENTJTYPE;
package TBSJSTATE.BUFFERis

taskBUFFERIs
pragma PRIORrrY(BUFFER_PRIORrrY);
entry CHECK(NEW_DATA: out BOOLEAN);
entry READ(VALUE: out ELEMENT TYPE);
entry WRrTE(VALUE: inELEMENTJTYPE);

end BUFFER;
function NEW.DATAreturn BOOLEAN;

end TBS_STATE_BUFFER;

- Implements a buffer with size 3, for dataflow
- streams, that is, those mat have the triggering
-"BYALL'condiüon
generic
type ELEMENTjrYPE is private;
package FIFOJBUFFER is

taskBUFFERIs
pragma PRIORrrY(BUFFER_PRIORrrY);
entry CHECK(NEW_DATA: out BOOLEAN)
entry WRITE(VALUE: in ELEMENTJTYPE)
entry READ(VALUE: out ELEMENTJTYPE);

end BUFFER;
function NEW.DATA return BOOLEAN;

end FIFO.BUFFER;

- Implements a buffer with size 1, for networked
- stream, no matter what land of streams they are
with AJSTRINGS; use AJSTRINGS;
with ADA STREAMS;
wtthSYSTEM.RPC;
generic
type ELEMENTJTYPE Is private;
PROC: SYSTEM.RPCPARTmON H>.
STREAM_NAME: in AJSTRING;
package NETWORKJBUFFER is

task BUFFER is
pragma PRIORnY(BUFFER_PRIORrrY);
entry WRrTE_EXTERNAL(

VALUE: in ELEMENT TYPE;
PROC:inSYSTEM_RPCPARTmON ID;
STREAM.NAME: in AJSTRING);

end BUFFER;
end NETWORK.BUFFER;

end PSDLJSTREAMS;

Figure 5.7. The New PSDL_Streams Ada Package Specification

2) The new drivers package should contain only the driver procedures related to

the operators belonging to that partition. It is very important to notice that the

distributed scheduling model assumes that a stream resides, i.e., it is

112

instantiated, in the same processor or partition of its consumer operator.

Therefore, for the consumer operator, it is irrelevant where the data came from,

and, furthermore, no changes will be needed for the individual driver

procedures within this package, since all the reads will be to local streams. The

only change would occur if it was necessary to perform a write to an external

operator. In this case, the write operation should be hard-coded by the

translator as a call to writejexternal, an entry of the special network stream

task. In Figure 5.8, which presents the network stream task body, it is apparent

that, after this rendezvous is accepted, there should be a call to some inter-

processor communication routine, e.g., DO_APC, that would deliver the

message. It is also at this point where most of the problems are going to

appear, as shall be seen.

with A.STRTNGS; use A_STRINGS
with ADA_STREAMS;
with SYSTEM_RPC;
package body NETWORK_BUEFER is

task body BUFFER is
PARAMETERS : SYSTEM_RPC.PARAMS_STREAM_TYPE(3);
— This type allows multiple stream elements within the
— same stream, depending on its declaration

begin
loop

accept WRITE_EXTERNAL(VALUE: in ELEMENT.TYPE;
PROCESSOR: in SYSTEM_RPCPARTmON_ID;

STREAM.NAME: in A.STRING) do
SYSTEM_RPCJX)_APC(PROCESSOR»PARAMETERS);
- parameters will include the remote procedure name,
— the psdl_stream_name and value

end WRrrE.EXTERNAL;
end loop;

end BUFFER;
end NETWORK.BUFFER;

Figure 5.8. Body of the Network Stream Task

1 This assumption will require that all exceptions from external streams should be treated and
consequently hard-coded in the consumer's side.

113

The changes made so far are very minor, since most of the burden is being put on

the write operation to external streams. In fact, the most difficult part of this

implementation is finding a way to receive the incoming messages from the different

processors and operators. Some kind of communications server, that will have the duty of

receiving and routing all the incoming messages to its final destination, will be needed.

Due to the semantics of PSDL, in order to reliably implement this communication, it will

be necessary to send some kind of header containing the consumer operator, the name of

the stream and the name of the destination processor along with the data.

These requirements for the header come from situations such as when the same

operator is trying to write to the same stream into different operators in different

partitions. This case is illustrated in Figure 5.9. In the next section the different options

available for implementing this communication sub-system are described.

DIFFERENT
PARTmONS

Figure 5.9. Justification for the Header Information

C. IMPLEMENTATION ISSUES OF THE COMMUNICATION SUBSYSTEM

One of the most important design issues is the choice of the communication

subsystem. It is recommended to use the remote procedure call (RPC) paradigm as

opposed to the traditional message passing mechanism. The reasons for this choice is that

RPC is widely implemented for interprocess communication between computers across a

network, being supported by most of the emerging distributed operating systems. Several

114

Standards have been initiated by organizations, such as ISO and OSF. This method also

provides an asynchronous form, relaxing the original synchronous semantics of RPC.

Finally, the Annex E (Distributed Systems) of the Ada95 Reference Manual makes it the

choice, though not mandatory, for future implementations of this Annex. [Ada95]

1. The RPC Model

The remote procedure call model is similar to the local procedure call model. In

the local case, the caller places arguments to a procedure in some well-specified location.

It then transfers control to the procedure, and eventually gains back control. At that

point, the results of the procedure are extracted from the well-specified location and the

caller continues execution.[Sun90]

The remote procedure call is similar. That is, the caller process sends a call

message to the server process and waits (blocks) for a reply message. The call message

contains the procedure's parameters, among other things. The reply message contains the

procedure's results, among other things. Once the reply message is received, the results of

the procedure are extracted, and the caller's execution is resumed. [Sun90]

Note that in this model, only one of the two processes is active at any given time.

The RPC protocol, however, makes no restriction if the implementation allows the calling

routine to do some useful work while waiting for the reply (asynchronous mode).

2. The First Approach

The first idea was to implement the RPC paradigm by using the standard RPC

libraries. However, in order to do that within CAPS, it would be necessary to call from

inside an Ada task, more specifically from inside the network tasks, a C routine that would

implement the RPC calls (see Figure 5.8). The reason for a C routine is that there is no

library support or existing bindings for implementing RPC from inside Ada83. It would

not be difficult to write an Ada wrapper to the C routine. However, the biggest problem

to be dealt with is how to pass the Ada parameters to the C routine, which could be very

complicated abstract data types from the PSDL prototype. Assuming that this problem

115

could somehow be solved, there is an additional problem: How could this C routine pass

the complex ADTs through the streams? In the Unix/C world, there currently exists a

great deal of support for these kinds of operations.

For example, the rcpgen utility is basically a compiler that accepts a remote

program interface definition written in the RPC language, which is very similar to C, and

outputs a C program, containing all the client routines, the server routine, and most

importantly, all the XDR filter routines. An XDR routine converts procedure arguments

and results in the network format (sequential streams) and vice-versa.

The External Data Representation (XDR) standard comprises a set of library

routines that allow a C programmer to describe arbitrary data structures in a machine-

independent fashion. XDR is the backbone of Sun's RPC package, in the sense that data

for remote procedure calls is transmitted using this standard. It was designed to work

across different languages, operating systems, and machine architectures.

It is important to note, however, that most of the time required to prepare a data

structure for transfer is not spent in conversion but in traversing the elements of the data

structure. To transmit a tree, for example, each leaf must be visited and each element in a

leaf record must be copied to a buffer and aligned there. Storage for the leaf may have to

be deallocated after the data is sent Similarly, to receive a tree, storage must be allocated

for each leaf, data must be moved from the buffer to the leaf and properly aligned, and

pointers must be constructed to link the leaves together. [Sun90]

In this case what is needed is a remote procedure called receive, running in all the

machines, ready to intercept any incoming messages, and another routine, namely send,

that wül also run in all machines and will remotely call the receive routine. In Figure 5.10

both routines which were successfully tested in the "C" environment are presented. Note

that the send routine is not sending anything, but merely passing parameters to the remote

procedure receive.

116

RPC_REC.C
/* receivers - remote procedures; called by server
stub. */

«include <stdio.h>
/* standard RPC include file */
«include <rpc/rpc.h>
I* this file is generated by rpcgen */
«include "RPC_receive.h"

I* Receive a string of chars and reply with a status
*/

char**
receive_l(message)

char ** message;
{

static charstatus[20] = "OK";
static charptrflOO];
static char *ptrl;

printf("Received message = %s\n", ""message);
fflush(stdout);
ptrl = &status[0];
strcpy (ptr,*message);
ptrl = &ptr[0]; •/
retum(&ptrl);

}

RPC_SEND.C
r RPC_sendx - client program for remote receive
service.*/

«include <string.h>
«include <stdio.h>
/* standard RPC include file */
«include <rpc/rpc.h>
/* this file is generated by rpcgen */
«include "RPCreceivch"

main(argc, argv)
int arge;
char *argvQ;

{
CLIENT *cl; /* RPC handle */
char *receiver_name;
char **status;
char "message;

if(argc!=3){
fprintf(stderr, "usage: %s hostname

message\n", argv[0]);
exit(l);

}
receiverjiame = argv[l];
message = argv[2];
/* Create the client "handle" */
if ((cl = clnt_create(receiver_name,

DISTR_SCHEDULE, CAPS95, "udp"))
= NULL){

I* Can't establish connection with receiver */
clnt_pcreateerror(receiver_name);
exit(2);

}

I* call the remote procedure "receive_l" */
printf("Message to be transmited = %s\n",

message);
fflush(stdout);
if ((status = receive_l(&message, cl)) =

NULL){
clnt_perror(cl, receiver_name);
cxit(3);

}
printf("Status from remote receiver %s is

%s\n", receiver_name,*status);
clnt_destroy(cl); /* done with the handle */
exit(0);

Figure 5.10. The RPC Programs for the New Scheduler

Finally, if both problems have been solved, i.e., the parameter passing between C

and Ada in the sender side and the Ada bindings for the XDR routines, there is still an

117

additional problem in the receiver side due to the way RPC is now implemented in C. The

receiving, or the server, routine, is implemented as a forever loop by calling the Unix

system call svc_run(). To overcome this problem one would need to be able to call an

Ada procedure from inside a C routine, and again the same problem of passing parameters

would be present.

Another approach, such as using files to exchange data between C and Ada, could

be used, but then other problems, such as file locking, and internal synchronization

between C and Ada tasking (so that no data could be overwritten before being consumed)

would come into play.

Because of all these problems, it seems that a better solution is needed, and just

such a solution is present in the Ada95 implementation, which will be described next

3. The Ada95 Approach

Annex E defines facilities for supporting the implementation of distributed systems

using multiple partitions working cooperatively as part of a single Ada program. These

facilities include pragmas for categorizing library units according to the role they play in

the distributed system, such as Shared_Passive, RemoteJTypes and

Remote_Call_Interface, and other mechanisms for supporting communication and access

to shared data. [Ada95]

The Partition Communication Subsystem (PCS), as defined in Annex E, provides

facilities for supporting communication between the active partitions of a distributed

program by using the remote procedure call interface (RPC). The annex also proposes a

specification for the RPC interface between active partitions within the PCS, which will be

contained in the package System.RPC. Figure 5.11 introduces the proposed specification

for the package System.RPC

118

with Ada.Streams;
package System.RPC is

type Partition_ID is range 0.. implementation-defined
Communication_Error: exception;
type Params_Stream_Type (Initial_size: Ada.Streams.Stream_Element_Count) is new

Ada.Streams.Root_Stream_Type with private;

procedure Read(Stream: in out Params_Stream_Type;
Item: out Ada.Streams.Stream_Element_Anay;
Last: out Ada.Streams.Stream_Elcment_Offset);

procedure Write(Stream: in out Params_Stream_Type;
Item: in Ada.Streams.Stream_Element_Anay);

— Synchronous call
procedure Do_RPC(Partition: in PartitionJD;

Params: access Params_Stream_Type
Result: access Params_Stream_Type);

— Asynchronous call
procedure Do_APC(Partition: in PartitionJD;

Params: access Params_Stream_Type);

— The handler for incoming RPCs
type RPC_Receiver is acess procedure(Params: access Params_Stream_Type

Result: access Params_Stream_Type);
procedure Establish RPC_Receiver(Receiver: in RPC_Receiver);

private
— not specified by the language

end SystemJyC;

Figure 5.11. Package SystemRPC (Specification)

As noted in Figure 5.11, during the execution of a remote subprogram call, most

of the parameters (and later results, if any) are passed using a stream oriented

representation which is suitable for transmission between partitions. The annex calls this

action marshalling. Unmarshalling is the reverse action of reconstructing the parameters

or results from the stream-oriented representation. Note that there is not any defined

standard for transformation, but nevertheless the XDR standard seems to be the choice for

most of the Ada compiler vendors.

119

The type Partition_ID is used to identify a partition, and Params_Stream_Type is

used for identifying the particular remote subprogram that is being called, as well as

marshalling and unmarshalling the parameters or result of a remote subprogram call, as

part of sending them between partitions. The Read and Write procedures override the

corresponding abstract operations for the type Params_Stream_Type.

Both synchronous and asynchronous communication are supported, and are

implemented by the procedures Do_RPC and Do_APC, respectively. Both procedures

send a message to the active partition identified by the Partition parameter. The first one

blocks the calling task until a reply message comes from the called partition, or some error

is detected by the PCS, in which case Communication_Error is raised at the point of the

call to Do_RPC. Do_APC operates in the same way as Do_RPC, except that it is allowed

to return immediately after sending the message.

Finally, the procedure Establish_RPC_Receiver is called only once, immediately

after elaborating the library units of an active partition, but prior to invoking the main

subprogram, if any. The Receiver parameter designates an implementation-provided

procedure called the RPC_Receiver which will handle all RPCs received by the partition.

Establish_RPC_Receiver saves a reference to the RPC-receiver. When a message is

received at the called partition, the RPC-receiver is called with the Params stream

containing the message. When the RPC-receiver returns, the contents of the stream

designated by Result is placed in a message and sent back to the calling partition.

The implementation of the RPC-receiver shall be reentrant, thereby allowing

concurrent calls on it from the PCS to service concurrent remote subprogram calls into the

partition.

a. The Package Streams

A Stream is a sequence of elements comprising values from possibly

different types, and allowing sequential access to these values. A stream type is a type in

the class whose root type is Streams. Root_Stream_Type. [Ada95]

120

The types in this class represent different kinds of streams. The pre-defined

stream-oriented attributes like TRead and TWrite make dispatching calls on the Read and

Write procedures of the Root_Stream_Type.

package Ada.Streams is
pragma Pure(Streams);
type Root_Stream_Type is abstract tagged limited private;
type StreamJElement is mod implementation-defined;
type Stream_Element_Offset is range implementation-defined;
subtype Stream_Element_Count is

Stream_Element_Offset range 0.. Stream_Element_Offset'Last;
type Stream_Element_Anay is

array(Stream_Element_Offset range o) of Stream_Element;

procedure Read(Stream: in out Root_Stream_Type;
Item: out Stream_Element_Anay;
Last: out Stream_Element_Offset) is abstract;

procedure Write(Stream: in out Root_Stream_Tvpe;
Item : in Stream_Element_Array) is abstract;

private
- not specified by the language

end Ada.Streams;

Figure 5.12. Package Ada.Streams (Specification)

Read operations transfer ItemLength stream elements from the specified

stream to fill the array Item. The index of the last stream element transferred is returned in

Last. Last is less than ItemLast only if the end of the stream is reached.

The Write operation appends Item to the specified stream. There are also

the Read, Write, Output and Input attributes that convert values to a stream of elements

and reconstruct values from a stream.

For every subtype S of a type T, some attributes are defined, which denote

either a procedure or a function call. Figure 5.13 presents such attributes.

121

- writes the value of Item to Stream
procedure S*Write(Stream: access Ada.Streams. Root_Stream_Type'Class;

Item: T);

- reads the value of Item from Stream
procedure SR.ead(Stream: access AdaStreams. Root_Stream_Type'Class;

Item: out T);

- writes the value of Item to Stream, including any bounds or discriminants
procedure S'Output(Stream: access Ada.Streams. Root_Stream_Type'Class;

Item: T);

- reads and returns the value of Item from Stream, using any bounds or
- discriminants written by a corresponding S'Output
function S1nput(Stream : access Ada.Streams. Root_Stream_Type'Class;

return T);

Figure 5.13. Stream Attributes

b. Conclusions

All of the problems that have been discussed in this section have been

addressed in the Ada95 implementation. Therefore, in order to implement the distributed

scheduling model, it is only necessary to follow the directions introduced in Section B. It

is now apparent that the example given in Figure 5.8 had already considered the packages

(System_RPC and Ada.Streams) and procedures (DO_APC) to be introduced with

Ada95. The only part that is not yet clear, because it is dependent upon implementation,

is the marshalling and unmarshaling operations, which will affect the manner in which the

Ada stream is constructed from the parameters passed during the rendezvous with the

write_external entry of the network stream task.

Figure 5.14 presents a pictorial view of the proposed architecture for the

new Distributed CAPS Scheduler.

122

wncwKkTta*

U.D_«:I

D_4:l

OMvnm cr_i
OVOATOK or_i nMoanHW

DJUD_1 »tJlU
CPUATCB cv
OBATEB e»_4 nwmRiu

OMSATca cr_9
OKUTOB flTjf

DYNAMIC

PROCESSOR 1

PROCESSOR 2

DYNAMIC SCHEDULES

ADA PARTITION
COMMUNICATION

SUBSYSTEM

(PCS)

STATIC fCHEDULOt

Figure 5.14. Architecture for the Distributed CAPS Scheduler

123

D. CPU SPEED RATIO ISSUES IN A PROTOTYPING
ENVIRONMENT

In a software prototyping environment, where the host machines usually used for

prototyping are not similar to the intended target machines (which may not even be known

a priori), special attention must be taken so that erroneous conclusions due to timing

problems during the prototyping are avoided.

There are two kinds of timing errors that can be foreseen in a real-time system.

Both of them may cause undesirable system behavior, such as deadlocks, buffer overflows,

or data inconsistency. The first kind of error has a relative nature, since it is caused by

computational events that occur in an improper sequence. They are solely dependent on

the relative order in which the computations occur, and can be avoided by proper

scheduling of the system [Mok83].

The second kind of error is more subtle, in the sense that it is caused by violation

of some specified timing constraints, such as missing deadlines. In CAPS, since a static

schedule is used to execute the prototype, this problem can only happen if the MET was

inaccurately specified, or if the MET was specified for running in a faster machine. What,

then, is the real meaning of the MET? Is it an absolute value, or is it dependent upon the

machine in which the module is running? Clearly, this is only the tip of an iceberg, and the

answer is no, it cannot be absolute, since the attribute execution time.is a function of the

machine throughput. A module that has an MET of 150 ms for some specific machine

may take longer than that to execute if running in a slower machine.

The problem is even bigger if the CAPS Software Base, which is supposed to be a

collection of reusable components provided by different vendors, is taken into account.

Each component should have a PSDL specification, with all the timing constraints, such as

MET, MRT, MCP, etc. All of this information will be used during the execution phase of

the prototype, in trying to match needs with the available components. The same problem

arises regarding their timing reference, since each vendor may well have their own.

124

This discussion demonstrates the imperative need for assuming a common timing

reference within CAPS. It can be anything, as long as it is consistent and used throughout

the prototype. Care must be taken when choosing this reference, however, since it may

lead to significant differences when dealing with reusable components from different

sources.

1. Choosing a Reference

Standard measures of performance provide a basis for comparison, and time is the

best way to measure computer performance. The computer that performs the same

amount of work in the least time is the fastest A number of popular measures have been

adopted in the quest for a standard measure of computer performance, but most of them

were forced into a service for which they were never intended. [HP90]

The MIPS, million instructions per second, is easily understood by a customer, in

that faster machines means bigger MIPS. However, the MIPS measure presents the

following problems:

1) MIPS is dependent on the instruction set, making it difficult to compare

machines with different instruction sets

2) MIPS varies between programs on the same computer

3) MIPS can vary inversely to performance

A classic example to the third of these points is the MIPS rating of a machine with

optional floating-point hardware. If it uses the hardware floating-point unit it will take

less time to execute, but it will also execute fewer and more complex instructions.

Software floating-point executes more but simpler instructions, resulting in a higher MIPS

rating [HP90].

Another popular alternative is million floating-point operations per second,

abbreviated as MFLOPS. However, MFLOPS is, clearly, highly dependent on the

machine and on the program.

125

Other options are synthetic benchmarks, such as Whetstone and Dhrystone, but the

best choice appears to be to use real programs, such as compilers, text editors, CAD tools,

etc., which have inputs, outputs, and other user-defined options. [HP90]

While having a standard of performance for computers is still beyond the horizon,

for prototyping purposes within CAPS, where many of the figures are still subject to

change during the prototype refinement process, any of these metrics provides a good

starting place. Again, for the sake of simplicity, the MIPS rating will be the reference

model for performance in this work.

2. CAPS Timing Model

It will be useful to define some of the terms used in construction of the model:

CAPS Reference -Specifies the MIPS rating of a hypothetical machine, to which

all of the CAPS timing information should be normalized.

HOST Reference - Specifies the MIPS rating of the host machine where CAPS is

installed. This value will be automatically generated by CAPS at the start of the session,

and it is the result of an Unix system call.

TARGET Reference - Specifies the MIPS rating of the target machine. In the

absence of this value, it is assumed that the host machine for CAPS is identical to the

target machine. This value should be provided by the user at the beginning of the design

of the prototype, and will affect the retrieval of reusable components from the Software

Base.

CPU Speed Ratio - Specifies the MIPS ratio between the target and the host

machine. It can be changed by the user to make temporary simulations and to overcome

possible timing errors. It is important to note that this value will have a very important

role in debugging possible timing errors during prototype execution. Its default value is

given by the formula:

OEITTC je _• Target Reference CPUSpeedRauo = „ b n f r Host Reference

126

Table 5.1 specifies the default values which will used throughout this discussion,

unless otherwise stated.

Reference
10 MIPS

Reference
20 MIPS

;3stÄii
Reference
15 MIPS

CPU Speed
iPRado

1.33

Table 5.1. Default Values for the Timing Model

a. Building the Prototype

All timing information, such as MET, PER, FW, MRT, MCP, LAT and

MOP, specified by the user during the design phase of the prototype, which in most cases

come from the Requirements Document, are assumed to be referenced or normalized to

the Target Reference. Therefore, when, for example, defining an operator with MET =

100ms, it should be understood that 100ms would be the maximum execution time

allowed for that operator if running in the target machine. It will default to the host

machine if the Target Reference is not given.

Note that the MET of this operator is equivalent to 200ms with respect to

the CAPS Reference; it is this value of 200ms that will be used in the query to the

Software Base during the search for a matching reusable component Observe also that

this value will not affect Translation nor Scheduling, since all timing information is

consistently and linearly normalized to the CAPS Reference.

b. Installing Components in the Software Base

When getting reusable components from a specific vendor or supplier, the

timing reference used to classify their components should be specified along with the

component For example, when a component arrives, it should be labeled as follows:

component X has a certified MET of 100ms under a 5 MIPS machine.

This information wül allow the insertion of the component into the

Software Base as a component with MET equal to 50ms, which is the correct value

normalized with respect to the CAPS Reference. Note that this value will be used during

its retrieval from the software base by the prototypes.

127

3. Relations between CPU Speed Ratio and Timing Errors

Assuming that all timing information from the reusable components is correct with

respect to the supplier's reference, then there should be no timing errors, if the component

matches the prototype specification. For example:

Suppose that a component with an MET of 120ms is needed. Then the correct

query to be performed on the Software Base should be for a component with an MET of

240ms, i.e.,

METCAPS = METTARGET X
Target^

CAPSREF

Therefore, using this component in the prototype, according to the generated static

schedule, should not cause any timing errors. However, if it does cause a timing error,

then it is possible to conclude that the component timing information was incorrect. To

solve this problem, the following steps can be taken:

a) Increase the CPU Speed Ratio until the error disappears. This means that a

reasonable MET for that component with respect to the Target reference, although it may

not be the tightest one, is equal to:

XT * ^r, New CPU Speed Ratio
New METT^ = oldCpuSpwdRa[jo x Oigtoal METTw

Note that another side effect in performing step a) is that the entire schedule is

stretched, and, consequently, the slack time available for the dynamic scheduler is

increased, since some of the timing critical operators don't need more time to execute.

b) Update the Software Base with the correct timing information for that

component

c) Reset the CPU Speed Ratio to its original value and take either step d), e) or f)

to solve the problem.

d) If requirements permit,change the PSDL specification to allow the bigger MET

found in step a). This in turn will require a whole new CAPS session, starting from a new

128

translation until the final compilation. Note that increasing the MET affects the load

factor and may cause an unfeasible schedule.

e) Search the Software Base for another reusable component that matches the

original MET. This new one may well have the correct information.

f) Create another new component or optimize the existing component Validate its

timing constraints and update the Software Base if succesfull.

g) If it is realized that a faster target processor is needed in order to cope with the

requirements, then the Target Reference should be changed so that those timing errors

disappear. Note that this change will only affect the CPU Speed Ratio, and as explained

earlier, and will not change the schedule. Theoretically, the necessary change for the

Target Reference can be derived very easily from the following formula:

New Target Reference = New CPU Speed Ratio x Original Host Reference

The other source of timing errors is found when dealing with user-created

components. In other words, the component just created takes more time than that

specified. For example, assume the previous situation, where a component with MET of

120ms is required. Since the host machine is slower than the target machine, the

scheduling time will be linearly stretched by a factor of 1.33, that is, 1.33 x 120ms, or

159.6ms, will be allowed for the execution interval of this component. If timing errors

occur, the following steps can be taken to eliminate them:

a) Increase the CPU Speed Ratio until the error disappears. This means that a

reasonable MET for that component with respect to the Target reference, although it may

not be the tightest one, is equal to:
New CPU Speed Ratio .

KPW MET = ~ r~~ x Original MET New MtiTnS old CPU Speed Ratio ^ T",a

b) Reset the CPU Speed Ratio for its original value and take either step c) or d) to

solve the problem.
c) If requirements permits, change the PSDL specification to allow the bigger

MET found in step a). This in turn will require a whole new CAPS session, starting from

129

a new translation until the final compilation. Again, this change may cause an unfeasible
schedule.

d) Rewrite the component trying to speed it up;

e) If it is realized that a faster target processor is needed in order to cope with the

requirements, then the Target Reference should be changed so that those timing errors

disappear. The required change for the Target Reference can be derived from the
following formula:

New Target Reference = New CPU Speed Ratio x Original Host Reference

f) After getting rid of the timing errors, if it is decided to add the user-created

component to the software base, the component should be associated with an METCAPS

equal to METT<irget x^^ 8 Target
REF

REF

4. How the CPU Speed Ratio affects Scheduling

TTe Static Schedule is basically a sequence of paus of abso.ute values contauting

the start tune and stop time for each instance of the time-critical operators within one
harmonic block.

At the beginning, the static scheduler task calls the function TARGET_TO_HOST,

which belongs to the package PSDL.TIMERS, and multiplies all those absolute time'

values by the CPU Speed Ratio. The net effect is that the scheduler will stretch or shrink

all of the timing information related to the prototype in a linear fashion.

130

CPU SPEED RATIO = 2

f t
Absolute Time

100. '200 300 400 500
« *

Simulation Time

200

Figure 5.15. Effect of the CPU Speed Ratio on the Schedule

5. Handling Unwanted Interactions during Prototype Scheduling

A software prototyping environment needs to simulate external entities so that the

entire system being prototyped can be exercised. These external entities will in most cases

cither generate inputs or consume outputs from the core of the system being prototyped.

This requires that the timing constraints are taken into consideration during the generation

of the schedule. However, it is during prototype execution that the effects are most

harmful, since they will incorrectly steal CPU time from the host system. It is also

unavoidable that time is spent by the host operating system to serve processes that

sometimes nothing have to do with the prototype.

All these unwanted interactions can dramatically affect timing behavior and overall

confidence in the prototype. The question to ask, then, is how can these timing

interferences be eliminated?

To solve these problems, CAPS introduced the technique of having two different

time lines. One is the absolute time line, and is driven by the real-time clock of the host

machine. The second one, the simulation time, will command all the scheduling actions of

the prototype.

131

What is going to happen is that whenever an external operator, or some operating

system function, is being executed, the scheduling clock will be frozen, so that, for the

prototype, it is as though they do not exist.

Another feature that can be explored with this technique is when an operator

belonging to the prototype exceeds its scheduling interval and causes an exception. It is

very likely that this will interfere with other operators, causing a chain of exceptions, when

in reality, only the very first operator incurred a timing error. Because of the use of a

simulated clock (the scheduling clock) it is possible to remove any excess of time from the

scheduling clock, and then resume the simulation, so that no further operators will be

affected.

132

VI. EXPERIMENTAL RESULTS

A. INTRODUCTION

Although the full implementation of the new Distributed Model is not complete,

due to software limitations of the current Ada compiler technology that will be solved by

the new Ada95 implementation, much can be said about expectations and also about the

general scheduling capability of CAPS.

One of the biggest problems encountered during this research was the lack of an

adequate set of prototypes to test the scheduler. Up to now, most of the development in

CAPS has been tested with a few prototypes that may be sufficient for the development of

several tools, but not for the scheduler, which requires a huge test set so that all the

critical points can be exercised. This is the reason for building a PSDL random graph

generator, as discussed in the next section of this chapter.

B. THE RANDOM GRAPH GENERATOR

The random graph generator has the following basic features:

1) builds PSDL prototypes with an arbitrary number of operators

2) allows the user to specify how many different prototypes are to be generated

3) provides an expert mode where the system attempts to reduce the harmonic

block automatically, by changing the periods of the periodic and the

transformed sporadic operators within an user-defined range

4) operates in two randomization modes: unlimited or restricted randomization

5) provides a compression capability, so that an arbitrary number of operators may

be located within a bounded load factor of one. This is very useful for testing

uniprocessor scheduling algorithms

6) allows the user to specify the desired percentage of timing critical operators,

periodic operators, and data flow edges

7) can generate prototypes with different degrees of sparseness

8) the user can specify the maximum number of edges between two operators

133

9) provides a thorough scheduling information for debugging puiposes

There are basically two major procedures that build the random graph. The first

one is the Produce_Random_Array and the second one is the Produce_Random_Matrix.

Both routines use the same data structure of the scheduler, so that the simulation is as

close as possible to the real prototype.

tjpt OPERATOR U type EDGE JNPOU
record raovd

THEOPERATORJ& OPERATORJD 9» A_STRINGxoyty; ORIGIN: INTEGER :»-l;
1HEJKT: MET 9-0; DEST: INTEGER s»-l;
TiCMRT: MRT»0-, PARENT: INTEGER :--l;
THEJiKP: MCPs.0; CHILD: INTEGER M-l;
THB.PBRIOD: PERIOD:-©; THIiATBNCT: LATENCY s>0-.
TtfiJOTTMN: WnWN^O; DATAFLOW.EDGE: BOOLEAN »ike;
ACnJAL_PERMD: PERIOD:»», OVERLAP.ABLB: BOOLEAN saw;
LOWBRJBRIOD: PERIOD :-0-, HAS_STATE_EDGE: BOOLEAN»«»;
UFPERJ>ER10D: PERK» a. PERIODlm; H*C_PER_SBC FLOAT r-OO;
THE.SLKXS: NODB.LIST.liK:« all; WCJNDEX: FLOAT »00:
LOADJPACT: FLOAT ^ 00; PRJNDBX: FLOAT ä-99ft
FANJN: INTEGER:-!); CONNECnVTTY: INTEGER »0;
FAN_OUT: INTEGER :-0; •adraoBrd;

tnd racord;

Figure 6.1. Partial View of the Data Structure Used to Build the Random Graph.

The first procedure, Produce_Random_Array, is the one that actually randomly

assigns the timing constraints to the random prototype. It has two modes of operation.

The first one uses a partial randomization, in the sense that only values from a pre-defined

set are assigned to the timing constraints. The second mode uses a full randomization, so

that any value within a finite range previously specified can be assigned.

It is in this procedure where most of the information provided by the user, such as

number of prototypes to be generated, number of operators in each prototype, percentage

of timing critical operators, mode of randomization, percentage of periodic operators, and

compression factor are used.

In the current implementation, the restricted randomization mode generates five

possible different values for MET (100,300,500,700, and 1000) and four values for each

of the remaining timing constraints PER, FW, MCP and MRT, which are dependent upon

the previous chosen value for the MET. This was done in order to assure semantic

compatibility with a valid PSDL prototype.

134

If one opts for unlimited randomization, then no restriction is imposed on timing

constraints, rather than limiting their values within a reasonable range, which now stands

between 0 and 8000 ms.

The random number generator being used has a period of approximately 2144, so in

order to achieve better results it is not reset after the generation of each different

prototype.

The expert mode is a facility that allows the user to automatically reduce the final

harmonic block length of the prototype, substantially increasing the schedulability of the

prototype. For more in depth information, refer to Chapter HI, Section E.

The compression factor is used so that, if the prototype happens to have a load

factor bigger than one (which would mean that it couldn't run in a uniprocessor system)

then me timing constraints are going to be compressed accordingly. This feature allow us

to test huge prototypes for uniprocessors that otherwise, due to the random nature of the

graph, would be very hard to achieve.

The second main procedure, Produce_Random_Matrix, is where artificial edges

are randomly generated according to the degree of sparseness and the maximum number

of edges defined by the user. It is also here where the latency for each edges is generated.

C. FIRST FINDINGS AFTER USING THE RANDOM GRAPH GENERATOR

The first finding after using the random graph generator was that the scheduling

capability of the existing CAPS scheduler is very poor. It is not likely that the scheduler

will find a feasible schedule for a moderate size prototype without manual adjustment of

all timing constraints after a long and tedious process of trial and error. But that is not

really bad because, after all, the static scheduling problem is a well known NP-Hard

problem. The interesting thing, however, is that even for very small prototypes, with as

few as 4 or 5 operators, and also a very limited number of edges, it still couldn't find a

feasible schedule, even through the use of traditional and widely accepted algorithms, such

as earliest start time first and earliest deadline first, modified for the non-preemptive

case. The question to be asked is, "Why does that happen, and how can we improve it?".

135

After meticulous analysis of several runs, with hundreds of random prototypes, it

was determined that, on average, the earliest deadline first algorithm finds a feasible

schedule for prototypes with load factors less than 0.5. It was also noticeable that the

schedulability of the prototype was affected somehow by the harmonic block length (HB).

There were some cases where, even with load factors over 0.95, after optimizing the HB

to smaller values, it was possible to find a feasible schedule, which could not be achieved

with the bigger HB. The load factor definitely has a strong influence on schedulability.

For the harmonic block, however, it was not thought that the influence would be so great.

There are two readily apparent explanations for the harmonic block syndrome.

The first is because of the higher number of instances that can fit in a bigger HB, the

probability of having two or more tasks fighting for the same time slot increases. The

second explanation is partially supported by Theorem 6 in Chapter m, where it is evident

that, by increasing the period of an operator, which might happen when its period is

optimized, it also has an effect of increasing the probability of finding a feasible schedule.

The following problems are now apparent: First, how to decrease the load factor

of our prototype, and; second, how to decrease its associated harmonic block.

The total load factor of the prototype cannot be changed much, since it comes

from the user's requirements. Splitting them into multiple processors will not do much

good in the current practice for non-preemptive static distributed scheduling, which

requires a global schedule for the entire prototype in order to satisfy all synchronization

requirements.

In order to change the harmonic block, assuming that the METs cannot be

changed, it is necessary to modify the periods, but recall that they are constrained by the

user's requirements. However, if we take a close look at these problems it is possible to

realize that they are quite different.

Assume that the requirements allow for making little changes in the periods, which

is a fair assumption, since in most of the systems it does not really matter if the period of

some task is 1000 ms or 1010 ms. So the effect of such period change on the load factor

136

is clearly veiy small, while for the harmonic block it may represent a very big change, since

it may get rid of some prime factor that was driving up the least common multiple (LCM)

of the periods. Following this line of reasoning a novel technique to decrease the

harmonic block was discovered, and will be described in the next section.

D. MINIMIZING THE HARMONIC BLOCK

The need for a harmonic block comes from the fact that, unlike most of the

problems in classical scheduling, this periodic task set contains an infinite number of

instances. Therefore, in order to calculate a static schedule for the task set, it is necessary

to find a time interval which can be repeated forever. When the completion time of the

first instances are restricted to be less than or equal to the periods, it is common for the

harmonic block to be the least common multiple (LCM) of the periods for such an

interval. However, when those restrictions to the deadlines do not apply, it has been

proven in Chapter HI Section C that it is sufficient to increase the time interval to twice

the LCM. At any rate, the point to be made is that in both cases the size of the LCM is

critical and, for the reasons explained in the previous section, it is desirable to make it as

small as possible.

Formally, the least common multiple of two natural numbers i and j is the smallest

natural number that is divisible by both i and j. It is also known from Number Theory that

every positive integer can be written uniquely as the product of primes, where the prime

factors are powers of some positive integer.

From the above definitions, it can clearly be seen that the LCM of two natural

numbers i and j will have in its prime factorization all of the prime factors of the original

numbers raised to the maximum exponent, as shown in the following example.

Example:

i = 120 = 23 x 3 x 5

j = 100 = 22 x 52

LCM (i j) = 23 x 3 x52 = 600

137

This same approach can be extrapolated to a case where several numbers are

present, instead of only two. So now the problem is decreasing the LCM of a set of

periods.

There are two basic approaches. The first one is trying to decrease the factor with

the biggest prime, and the other is decreasing the biggest prime factor. Clearly, the second

approach is more expedient, but still leaves the following problem. Suppose all of the

periods which are contributing for the factors in the LCM are identified, and have been

placed into a critical list, with some kind of mapping to the factors they are affecting.

Now, assume that the period which is contributing for the biggest factor is changed. With

luck, that biggest factor may be eliminated. However, the exponent of some other prime

factor from that same period may be increased, now becoming the critical one for the

LCM. In other words, it is necessary to re-evaluate the critical list and the corresponding

mapping after each iteration of the optimization process, or one may end up with a non-

optimal solution.

After this brief description of the problem statement, it is possible to introduce the

algorithm for optimizing the LCM, which is presented in Figure 6.2.

138

Algorithm OptimizeJXM
For every period calculate its prime factors;
Calculate the initial LCM for the periodic task set and its prime factors;
Set the flag LCM is decreasing to false;
While there exists a prime factor of the LCM not yet optimized loop

Insert those tasks whose periods are contributing for the LCM factors into the
Critical List in decreasing order of their contribution. In other words, the head of
the Critical List will be the task with the biggest contribution to the LCM;
While the Critical List is non-empty loop

Pick the task which is in the head of the Critical List;
Remove its contribution from the LCM;
For each period within its allowable range loop

Calculate the new LCM;
If LCM is decreasing then record this period as the best one so far,

end loop;
If LCM is decreasing then

Update the new LCM and the task prime factors
end if;
Remove this task from the Critical List;

end loop;
if LCM is decreasing then

It means that come critical task in the Critical List had its period changed
and consequently reduced the LCM. Now is the subtle part, even if we had
some period in the Critical List that couldn't have its biggest factor
changed, so that the LCM could decrease, it needs to be reconsidered, since
the order in which the Critical List was scanned matters!! In other words,
after all the others in the Critical List have been processed, it may well now
be possible to change that same task so that the LCM will be decreased. So,
we need to calculate the new LCM and start all over again,

else if LCM is not decreasing
Means that none of the critical tasks in the Critical List were able to get rid
of their biggest factor, and so there is nothing else to do other than skip to
the second biggest factor, and so forth,

end if;
Set LCM decreasing flag back to false;

end loop;
end Algorithm Optimize.LCM;

Figure 6.2. Algorithm for Optimizing the LCM

Although its optimality has not been formally proven, it is believed that this

algorithm will always lead to near-optimal results. By applying this algorithm to some

random task sets it was possible to tremendously reduce the harmonic block, with some

positive effects in schedulability. It should also be noted, by the examples shown below,

139

that the periods are of critical importance. With very few changes in the periods an

enormous decrease in the LCM can be achieved, with consequently few effects on the load

factor.

Example INIHAtPERIOD NEW PERIOD

1

100 100
500 500
600 600
800 750
1033 1000

LCM 12396,000 3000

2

1500 1500

1320 1400
1677 1820
500 500
700 700
800 875
1000 1000
999 1092
2987 3250

LCM 5.13763486E+14 273,000

4132 TIMES
SMALLER

Figure 6.3. Optimization Results

1,881,917,532 TIMES
SMALLER

E. THE NEW DISTRIBUTED SCHEDULING ALGORITHM - SOME
RESULTS

After running several hundreds prototypes with typical values for the timing

constraints (such as MET, MRT, MCP and PER) it was possible to make several

conclusions in addition to those already cited in the previous sections. One of them, and

actually the main driving force for directing us to distributed scheduling, was the palpable

necessity for prototypes with load factors bigger than 1.0, specifically in our applications

domain.

Another major point discovered after this research is the real need for supporting

and advising the real-time system designer, mainly with respect to the values for the timing

constraints. Remember that non-preemptive static scheduling is a well known NP-Hard

140

problem, so that unless P=NP, there is not much hope of finding better ways to solve this

problem. That is why, sometimes, in prototypes with only two nodes, it was impossible to

find a feasible schedule.

So, what is really needed is to find better ways to live with this problem One of

the ways to accomplish this is by providing better support in the area of schedulability

tests, which is also a known NP-Hard problem That is why several theorems were

presented in Chapter m, which, it is hoped, will help in finding and pin-pointing some of

the problems in the user's design.

It is possible by making use of those theorems to suggest changes in the timing

constraints of a set of tasks, or even in a specific task, to suggest different partitions so

that some tasks are kept together due to the similarities of their timing constraints, etc.

Now the scheduler can handle prototypes with load factors bigger than one, by

applying the allocation algorithm described in Chapter V. The user can either specify the

maximum load factor allowed per processor, or the number of processors. It is also

capable of generating a schedule, if one can be found, by using a distributed version of the

Earliest Deadline First algorithm By making use of the Fundamental Synchronization

Theorem it is now possible to divide the schedule into several smaller schedules, so that its

complexity is tremendously decreased.

The robustness of the new scheduler is enhanced due to the large testing that was

made possible by the random graph generator. Several important bugs were found during

these experiments. It was possible to analyze and compare the performance of the

different uniprocessor scheduling algorithms currently implemented in CAPS. The output

generated by the scheduler is now more comprehensive, improving the debugging

capability.

An expert mode is provided to the designer, so that the harmonic block will be

decreased with some effects on the load factor. A possible enhancement for the expert

mode is to combine it with the actual scheduling. In other words, instead of applying the

141

optimization algorithm to the entire task set in only one step, prior to the scheduling, an

attempt should be made to schedule the task set after each optimization iteration.

As can be seen, quite a lot has been accomplished towards a more dependable and

reliable scheduler, but much more needs to be done so that CAPS can become a true

design aid to real-time system designers.

142

VA. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY OF THE DISSERTATION

This dissertation can be roughly divided into three parts. The first part (Chapters I

through HI) presents a review of the most important results in the area of hard real-time

scheduling and introduces several theorems to improve the schedulability analysis of task

sets containing both periodic and sporadic tasks. The effects of precedence relationships

among the tasks on these theorems is also analyzed. Although most of the work was done

for the non-preemptive model, several results are also applicable to the preemptive case,

as highlighted throughout the dissertation. The second part of the dissertation (Chapter

IV) introduces the novel method of hard real-time distributed scheduling without explicit

synchronization. The motivation for this new approach is the complexity of the hard real-

time scheduling problem, where for even small size systems running in a uni-processor

environment, it is extremely hard to find a feasible schedule. With the addition of one

more variable, such as distributed processing, the general scheduling problem becomes

intractable, and unless P=NP, there is no reason to foresee any solution to this problem It

was therefore decided to sacrifice timing constraints in order to decrease the complexity of

the scheduling problem Depending on the application, this approach may not be

applicable. However, this approach should work in most cases, especially in prototyping,

which is usually in the early stages of the life cycle of the system, allowing for the fine

tuning of timing requirements. The third part of the dissertation deals with the

architectural aspects of implementation of a distributed real-time scheduler without

making use of any explicit synchronization. The following paragraphs present a summary

of the salient results found in each chapter.

Chapter I highlights the increasing demand for real-time systems in life-critical

areas that were heretofore unexplored Some basic definitions for hard real-time systems

are also introduced, and a taxonomy for scheduling is proposed. Past research in real-time

scheduling is reviewed and the major results are listed in tabular form. A brief note shows

143

that the complexity of scheduling algorithms for a non-periodic task set, which are solved

in polynomial time, become exponential when dealing with periodic task sets. Some

complexity results for message routing in hard real-time distributed systems are also

presented.

Chapter II presents a brief discussion of the Computer Aided Prototyping System

(CAPS) which is a software engineering tool for developing prototypes of real-time

systems. The Prototyping System Description Language (PSDL) and its facilities for

modeling real-time systems are also described in this chapter.

Chapter HI formalizes the real-time scheduling problem for periodic and sporadic

task sets. It starts by introducing the scheduling model that will be used throughout the

dissertation, and proceeds with the presentation of several theorems for improving the

schedulability analysis of tasks with hard deadlines. The three most important results in

this chapter are established by Theorems 6, 7, and 8. The Task Demand Theorem

(Theorem 6), specifies necessary conditions for task sets with arbitrary deadline and

release times to be schedulable. It is also shown that if release times are taken into

consideration, due to precedence relations, for example, the conditions are no longer

necessary, but only sufficient. Theorem 7 extends this result, and proves that any periodic

or sporadic task set satisfying the conditions of Theorem 6 can be scheduled with the

Earliest Deadline First (EDF) algorithm, thus making the conditions specified in Theorem

6 necessary and sufficient The Harmonic Block Theorem (Theorem 8) introduces the

novel concept of transient and cyclic schedules, which is an enhancement of the traditional

method for calculating a cyclic schedule, if one exists. It is shown by example that this

latter method improves the schedulability of task sets which were found to have no

feasible schedule by the traditional method. Later in the chapter all previous results are re-

analyzed for the case where precedence relationships exist among the tasks. Theorem 8 is

also extended to handle the situation where latencies are involved in the scheduling. Note

that the net effect of introducing latencies in the problem is that the schedule can no longer

be assumed to have no inserted idling time in the interval [0.LCM]. Finally, a

144

methodology to convert sporadic operators into equivalent periodic ones is presented,

along with some important considerations about this conversion.

Chapter IV presents an in-depth discussion covering all possible aspects of the

communication involving two PSDL operators connected by some kind of data stream.

The synchronization problem between producers and consumers is carefully analyzed, as is

the underlying meaning of missing a deadline within the context of a real-time system.

The conclusion reached is that missing deadlines are always attached to data that is not

generated or consumed in the proper timing. This data approach for the synchronization

problem will lead to the new distributed scheduling model with no explicit

synchronization, which is formalized by the Fundamental Synchronization Theorem

(Theorem 9). The application of this theorem allows each set of tasks allocated to a

particular processor to be treated as a totally independent set, provided that some more

stringent timing constraints are satisfied. This approach will greatly decrease the

scheduling complexity of large distributed real-time systems, although it may be applicable

as well to cases involving uni-processors or shared memory multiprocessors. At the end

of this chapter are some considerations about the allocation model implemented for the

distributed scheduler in CAPS.

Chapter V presents the current implementation of the CAPS uni-processor

scheduler and it also proposes an architecture for implementing the full version of the

distributed scheduler. It describes two options for implementing the distributed version.

The first is to use the currently available C libraries for implementing the communication

sub-system. Several problems with this approach are also addressed. The second option

relies on the availability of a full Ada95 compiler, which, according to the Ada95

Reference Manual's Annex E, will support communications between tasks running in

different processors. In the last section of this chapter several interesting considerations

are presented regarding the timing problems involved in a typical software prototyping

environment. Topics such as simulated time, normalized reference for time information,

timing errors, and why they happen are covered in this section.

145

Chapter VI presents experimental results of the partially implemented distributed

scheduler in CAPS. The random PSDL graph generator, which was one of the important

factors for a better understanding of the scheduling problems in CAPS, is described.

Finally, an important issue is discussed which is not given enough attention by most of

researchers, namely, the least common multiple (LCM) of the periods of a periodic task

set, which ultimately will determine the size of the cyclic schedule for the task set It is

demonstrated that, by making minor changes in the original periods, the final LCM and,

consequently, the solution space of the corresponding scheduling problem can be

drastically reduced.

Chapter VII is the conclusion, but it also proposes some modifications for CAPS,

so that it can become a more dependable and reliable design tool for building real-time

systems.

B. POSSIBLE CAPS MODIFICATIONS

As a result of this dissertation, several weaknesses and areas requiring

improvement within the entire CAPS and PSDL were identified. Many errors in the static

scheduler were corrected, but others require further effort.

1. Enhancing the CAPS Syntax Directed Editor (SDE)

As discussed in Chapter IV, several semantic checks for the input PSDL program

are currently enforced by the scheduler. It seems reasonable, however, to allow most of

these checks to be enforced by the SDE. This approach would allow the user to detect

and receive warnings about the design in the early stages of prototyping. In doing so, the

designer would not have to go all way back to the SDE when a semantic error was found

by the scheduler.

2. Tasks with Soft Deadlines

In CAPS there are only tasks with hard deadlines (TC), or tasks with no deadlines

at all (NTC). In real-time systems however, there are often a third kind of deadline, but if

it is missed for some reason it does not cause any harm to the system This is known as a

146

"soft deadline". Right now for example, an NTC operator can starve for a long time

before its execution. This was certainly not the intention of the designer when the

operator was placed in the prototype. This anomaly happens because the Non-Time

Critical operator (NTC) depends on the time left by the static scheduler, which can be

none if the load factor is 1.0, and all the TC operators use their entire MET.

The implementation of tasks with soft deadlines or some other approach, like the

time-value functions presented in Chapter I, would greatly improve the scheduling

capability of prototypes in CAPS.

3. Preemptive Static Scheduling

So far this option has not been used in CAPS because of the ADA83 tasking

model, which prevents tasks with higher priority to change their relative position in the

FIFO queue of a rendezvous. ADA95 however, allows dynamic changes in the queue

according to their priority and, therefore, the preemptive model again becomes a valid and

reasonable option for the CAPS scheduler. Note that, in general, the preemptive

scheduling problem is easier to deal with than the non-preemptive one, allowing much

better scheduling results. Further research is needed, but it appears that allowing a

mixture of preemptive and non-preemptive tasks is the best approach available.

4. Triggering Conditions versus Stream Types

Currently, in the PSDL model a sampled stream does not guarantee that the data is

not lost or replicated. In the same model, however, the stream type is determined from

the triggering condition of the consumer operator, e.g., an operator with a TRIGGERED

BY SOME condition is supposed to guarantee that its output is based on the most recent

value of the input sampled stream, which is to some extent a contradiction. Our

suggestion is to separate triggering conditions from the type of the streams, so that there

can be a more orthogonal grammar for PSDL. A sampled stream should be defined as the

stream where the data can be read zero or more times, whether in a data flow stream it can

be read once and only once. It is understood that this definition better conveys the real

147

meaning of a stream, since a stream by itself should not guarantee whether or not the data

is lost; the stream is simply a mechanism to transfer data.

Once the idea of separating triggering conditions from stream types is accepted, it

is necessary to check which are the valid combinations. These combinations are presented

in Table 7.1, and should be considered valid unless an exception is noted.

TRIGGERED
BY ALL

«TRIGGERED!!* NO TRIGGER

DATA PLOW STREAM OK NOK (2) NOK (3)
SAMPLED STREAM NOK (1) OK OK

Table 7.1. Triggering Condition and Stream Type Combinations

(1) Assume an operator A TRIGGERED BY ALL X,Y, where X and Y are

sampled streams. Suppose data arrived only in X. It is necessary to wait for new data in

Y, but after A is fired, both pieces of data are consumed, and the old data cannot be used

again, otherwise it is impossible to know which data is new or old, and therefore the

existence of this case does not make sense. The only situation where this combination

would be needed is if combinations of TRIGGERED BY SOME and TRIGGERED BY

ALL are allowed to exist for the same operator. Note, however, that this combination can

always be implemented in two steps and with one additional operator.

(2) Assume an operator A TRIGGERED BY SOME X,Y, where X and Y are

data flow streams. Suppose only X gets new data. Operator A will fire and consume the

data in X, leaving nothing behind because it is data flow. When new data comes in Y,

there is nothing in X, and an underflow will occur.

(3) It does not make sense, because if there is no trigger, how can the consumer be

guaranteed to always catch new data that comes into the data flow?

5. Estimating the Execution Time

As explained earlier, the MET is an upper-bound on the execution time of an

operator, and it is this value which is used by the scheduler to generate the static schedule.

Therefore, everything that can be done to decrease the MET is going to have a direct

effect on the schedulability of the prototype. It would be nice if it were possible to, at run-

148

time, keep track of the real amount of time needed by each operator, so that feedback

could be given to the user about its real MET for further update of the Software Base.

6. The Uninitialized Sampled Stream Problem

Suppose there is a non-time critical operator (NTC) connected to a time critical

operator (TC) by a sampled stream. Clearly, the TC operator may be fired at least once

before the NTC operator, and therefore it will read garbage from the sampled stream.

This problem is aggravated in distributed scheduling, as shown by the example in

Figure 7.1.

Figure 7.1. The Uninitialized Sampled Stream Problem

Note that this example does not cause any problem in the uni-processor case, but

in distributed scheduling, if OPi and OP2 are assigned to different processors, OP2 may

fire before OPi, and an uninitialized sampled stream will be read. A proposed solution

would be to force the sampled stream to be declared as a state stream whenever an initial

value is needed.

7. State Stream versus Data Flow

It does not make sense to have an operator TRIGGERED BY ALL X, if X is, for

example, a state stream. The reason for this is that values carried by state streams should

always be available, and in a data flow stream the value is consumed after it is read, and no

longer available. A warning should therefore be given if this happens in a PSDL program.

149

C. CONCLUSIONS

This dissertation shows that hard real-time systems and, more specifically, hard

real-time scheduling, are areas which are far from being totally explored. The next

generation of hard real-time systems will be extremely large, complex, and most certainly

distributed. They will be truly distributed, without any need for synchronization among

processors.

Most of the work so far in this area has been concentrated on finding better

scheduling algorithms, without concentrating on the real need for synchronization.

Deadlines are always attached to data not being generated or consumed in a timely

fashion. This dissertation is the first work ever done in the area of distributed scheduling

without any explicit synchronization, and it is hoped that it will mark a turning point in the

distributed scheduling field. It is far from being complete, but it does provide a totally

different perspective on the distributed scheduling problem.

Finally, this dissertation offers the following scientific contributions:

1) A new model for distributed scheduling without synchronization;

2) Several theorems on the schedulability of periodic and sporadic task sets,

improving the state of the art in the scheduling field;

3) A general Timing Model for Pototyping Systems, which will enable interaction

with different time references, keeping total consistency throughout the design;

4) A method for optimizing the schedule length of periodic task sets. This

approach will decrease the time spent in scheduling and improve the chances of

finding a feasible schedule;

5) Making use of recent theoretical results in scheduling, they have been adapted

to the model in this work in order to support a systematic and formal method

for the design, synthesis, and validation of tuning constraints in hard real-time

systems.

150

More specifically related to CAPS, the following contributions can be listed as

additional results of this dissertation:

1) Enhancement of the existing CAPS Prototyping System with a new Distributed

Scheduler with:

• allocation capability

• increased reliability

• better schedulability

• and an expert mode

2) A Random PSDL Graph Generator.

151

152

LIST OF REFERENCES

[AB93] N. Audsley and A. Bums, Real-Time System Scheduling, Technical Paper
University of York, UK, 1993.

[Ada95] Ada 95 Reference Manual, Intermetrics, Inc., January 1995.

[Bad93] S. Badr, A Model and Algorithms for a Software Evolution Control System,
Ph.D. Dissertation, Naval Postgraduate School, December 1993.

[Bak74] K. Baker, Introduction to Sequencing and Scheduling, John Wiley & Sons,
Inc., 1974.

[BFR71] P. Bratley, M. Florian and P Robillard, Scheduling with Earliest Start and
Due Date Constraints. Naval Research Logistics Quarterly, 18(4), December 1971.

[BL91] V. Berzins and Luqi, Software Engineering with Abstractions, Addison-
Wesley, Reading, MA, 1991.

[Bla76] J. Blazewicz, Scheduling Dependent Tasks with Different Arrival Times to
Meet Deadlines, Proceedings of the International Workshop on Modelling and
Performance Evaluation of Computer Systems, Amsterdam, North-Holland, pp.57-65,
1976.

[Boa84] B.H. Boar, Application Prototyping: A Requirements Definition Strategy for
the 80's, John Wiley and Sons, Inc., New York, 1984.

[Boe86] B.W. Boehm, A Spiral Model of Software Development and Enhancement,
ACM SIGSOFT Software Engineering Notes, vol. 11, no. 4, pp. 14-26, August 1986.

[Boo87] G. Booch, Software Engineering with Ada, 2nd ed., Benjarnir^Cummings
Publishing Co., Inc., Menlo Park, CA, 1987.

[Bro94] J. Brocken, The Computer-Aided Prototyping System (CAPS) Tutorial, Naval
Postgraduate School, November 1994.

[BS74] K.R. Baker and Z.S. Su, Sequencing With Due-dates And Early Start Times
To Minimize Maximum Tardiness, Naval Research Logistics Quarterly, vol. 21, pp. 171-
176,1974.

[BT83] J.A. Bannister and K.S. Trivedi, Task Allocation in Fault-Tolerant
Distributed Systems, Acta Informatica, Springer-Verlag, 1983.

153

[CG72] E.G. Coffman and R. Graham, Optimal Scheduling for Two-Processor
Systems, Acta Informatica, 1,1972.

[CHL80] W.W. Chu, L.Y. Holloway, M.T. Lan and K. Efe, Task Allocation in
Distributed Data Processing, Computer, vol. 13, no. 11, pp. 57-69, November 1980.

[CSR87] S.C. Cheng,, J.A. Stankovic and K. Ramamritham, Scheduling Algorithms for
Hard Real-time Systems - A Brief Survey, COINS Technical Report 87-55, June 10,1987.

[Dam94] D. Dampier, A Formal Method for Semantics-Based Change-Merging of
Software Prototypes, PhX>. Dissertation, Naval Postgraduate School, June 1994.

[DD86] S. Davari and S.K. Dhall, An on Line Algorithm for Real-Time Tasks
Allocation, IEEE Real-Time Systems Symposium, December 1986.

PL78] S.K. Dhall and C.L. Liu, On a Real-Time Scheduling Problem, Operations
Research, vol. 26, no. 1, pp. 127-140, February 1978.

[Dol93] S. Dolgoff, Automated Interface for Retrieving Reusable Software
Components, Master Thesis, Naval Postgraduate School, September 1993.

[EFM83] J. Erschler, G. Fontan, C. Merce and F. Roubellat, A New Dominance
Concept in Scheduling N Jobs on a Single Machine with Ready Times and Due Dates,
Operations Research, 31(1), 1983.

[GJ75] M.R. Garey and D.S. Johnson, Complexity Results for Multiprocessor
Scheduling Under Resource Constraints, SIAM Journal of Computing, 1975.

[GJ77a] M.R. Garey and D.S. Johnson, Two-processors Scheduling with Start-times
and Deadlines, SIAM Journal on Computing, vol. 6, pp. 416-426,1977.

[GJ77b] T. Gonzalez and D.B. Johnson, A New Algorithm for Preemptive Scheduling
of Trees, Technical Report 222, Computer Science Department, Pennsylvania State
University, 1977.

[GJS81] MR. Garey, D.S. Johnson, B.B. Simons and R.E. Tarjan, Scheduling Unit-
Time Tasks with Arbitrary Release Times and Deadlines, SIAM Journal CompuL, 10(2),
pp. 256-269, May 1981.

[Hor74] W.A. Horn, Some Simple Scheduling Algorithms, Naval Research Logistics
Quarterly, 21, pp. 177-185,1974.

154

[HP90] J. Hennessy and D. Patterson, Computer Architecture a Quantitative
Approach, Morgan Kaufmann Publishers, Inc., 1990.

[Hu61] T.C. Hu, Parallel Scheduling and Assembly Line Problems, Operations
Research, 9, pp. 841-848,1961.

[Jac55] J.R. Jackson, Scheduling a Production Line to Minimize Maximum Tardiness,
Research Report 43, Management Science Research Project, University of California, Los
Angeles, 1955.

[Jef89] K. Jeffay, The Real-Time Producer/Consumer Paradigm: Towards Verifiable
Real-Time Computations, PhX>. Thesis, University of Washington, Department of
Computer Science, Technical Report #89-09-15, September 1989.

[Jen77] CJ. Jenny, Process Partitioning in Distributed Systems, Digest of Papers
National Telecommunications Conf., 1977.

[JSM91] K. Jeffay, D. Stanat and C. Martel, On Non-Preemptive Scheduling of
Periodic and Sporadic Tasks, Proceedings of Real-Time Systems Symposium, December
1991.

[Lam88] D.A. Lamb, Software Engineering Planning for Change, Prentice Hall,
Englewcod Cliffs, NJ, 1988.

[Law73] E.L. Lawler, Optimal Sequencing of a Single Machine Subject to Precedence
Constraints, Management Science, 19, pp. 544-546,1973.

[LB88] Luqi and V. Berzins, Rapidly Prototyping Real-Time Systems, IEEE
Software, vol. 5, pp. 25-36, 1988 and Technical Report NPS52-87-005, Naval
Postgraduate School, Monterey, CA, 1987.

[LBY88] Luqi, V. Berzins and R.T. Yeh, A Prototyping Language for Real-time
Software, IEEE Transactions on Software Engineering, vol. 14, no. 10, pp. 1409-1423,
October 1988.

[Lei80] D. Leinbaugh, Guaranteed Response Times in a Hard Real-Time
Environment, TFF.F. Trans, on Software Engineering, vol. SE-6, pp. 85-91,1980.

[LK88] Luqi and M Ketabchi, A Computer Aided Prototyping System, IEEE
Transactions on Software Engineering, March 1988 and IEEE Software, vol. 5, pp. 66-
72, March 1988.

155

[LL73] C.L. Liu and J.W. Layland, Scheduling Algorithms for Multiprogramming in
a Hard Real-Time Environment, Journal of the ACM, vol. 20, no. 1, pp. 46-61, January
1973.

[LLK76] BJ. Lageweg, J.K. Lenstra and A.H.G. Rinnooy Kan, Minimizing Maximum
Lateness on One Machine: Computational Experience and Some Applications, Statistica
Neerlandica 30, pp. 25-41,1976.

[LLS91] J.W.S. Liu, KJ. Lin, W.K. Shin, A.C. Yu, J.Y. Chung and W. Zhao,
Algorithms for Scheduling Imprecise Computations, IEEE Computer, pp. 58-68. Mav
1991. y

[LS86] JJ». Lehoczky and L. Sha, Performance of Real-Time Bus Scheduling
Algorithms, ACM Performance Evaluation Review, Special Issue, vol. 14, no. 1 Mav
1986.

[LSB93] Luqi, M. Shing and J. Brockett, Real-Time Scheduling in System Prototyping,
Proc. Fourth International Workshop on Rapid System Prototyping, Research Triangle
Park, NC, pp. 28-30, June 1993.

[LSD89] JP. Lehoczky, L. Sha and Y. Ding, The Rate Monotone Scheduling
Algorithm: Exact charactherization and average case behavior, Proceedings of IEEE 10th

Real-Time Systems Symposium, pp. 166-171, December 1989.

[LTW89] J.Y. Leung, T.W. Tam, GS. Wong and G.H. Young, Routing Messages with
Release Time and Deadline Constraints, Proc. of Euromicro Workshop on Real Time
Como, Italy, pp. 168-177,1989.

[Luq89] Luqi, Software Evolution Through Rapid Prototyping, IEEE Computer, pp.
13-25, May 1989.

[Luq93] Luqi, Real-Time Constraints in a Rapid Prototyping Language, Computer
Language, vol. 18, no. 2, pp. 77-103,1993.

[LW90] J.Y. Leung and C.S. Wong, Minimizing the Number of Late Tasks with Error
Constraint, Proc. of the 11* IEEE Real-Time Systems Symposium, pp. 32-40,1990.

rLY82] D.W. Leinbaugh and M.R. Yamini, Guaranteed Response Times in a
Distributed Hard Real-Time Environment. Proc. IEEE Real-Time Systems Symp
December 1982.

rMar82] C. Martel, Preemptive Scheduling with Release Times, Deadlines and Due
Times, J. ACM, 29(3), 1982.

156

[MC70] R.R. Muntz and E.G. Coffman, Preemptive Scheduling of Real-Time Tasks
on Multiprocessor Systems, J. ACM, 17(2), pp. 324-338, April 1970.

[Mok76] A.K. Mok, Task Scheduling in the Control Robotics Environment,TM-71,
Laboratory for Computer Science, MIT, September 1976.

[Mok83] A.K. Mok, Fundamental Design Problems of Distributed Systems for the
Hard-Real-Time Environment, PhX>. Thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge, MA, May 1983.

[M0068] J. Moore, An n Job, One Machine Sequencing Algorithm for Minimizing the
Number of Late Jobs, Management Science, vol. 15, no. 1, pp. 102-109, September 1968.

[Pre87] R.S. Pressman, Software Engineering: A Practitioners Approach, 2nd. ed.,
McGraw-Hill, Inc., New York, NY, 1987.

[Sch90] S.R. Schach, Software Engineering, Aksen Associates, 1990.

[Sim83] B. Simons, Multiprocessor Scheduling of Unit-Time Jobs with Arbitrary
Release Times and Deadlines, SIAM Journal for Computing, 12(2), pp. 294-299, May
1983.

[SR88] J.A. Stankovic and K. Ramamritham Tutorial on Hard Real-Time Systems,
IEEE Computer Society Press, Washington, DC, 1988.

[SSN93] J.A. Stankovic, M Spuri, M. Di Natale and G. Buttazzo, Implications of
Classical Scheduling Results for Real-Time Systems, CMPSCI Technical Report 93-23,
March 1993.

[Sun90] Network Programming Guide, Sun Microsystems, Inc., 1990.

[SW89] S.M Shatz and J. Wang, Tutorial: Distributed Software Engineering, IEEE
Computer Society Press, 1989.

[Tae93] TAE+ Reference Manual, Century Computing, Inc., September 1993.

[U1175] J.D. Ullman, NP-Complete Scheduling Problem, Journal of Computer and
System Sciences, vol. 10, pp. 384-393,1975.

[U1176] J.D. Ullman, Complexity of Sequence Problem, in E.G. Coffman, Computer
and Job-Shop Scheduling Theory, John Wiley & Sons, NY, 1976.

157

[XP90] J. Xu and D. Parnas, Scheduling Processes with Release Times, Deadlines,
Precedence, and Exclusion Relations, IEEE Transactions on Software Engineering, vol.
16, no. 3, pp. 360-369, March 1990.

[You89] E. Yourdon, Modern Structured Analysis, Yourdon Press, Englewood Cliffs,
NJ, pp. 80-95,1989.

[ZLC94] J. Zhu, T.G. Lewis and J. Colin, Scheduling Hard Real-Time Constrained
Tasks on One Processor, To be published.

158

BIBLIOGRAPHY

[BDW86] J. Blazewicz, M. Drabowski, and J. Weglarz, Scheduling Multiprocessor
Tasks to Minimize Schedule Length, IEEE Transactions on Computer, C-35(5), 1986.

[BS93] G. Buttazzo and J.A. Stankovic, RED: A Robust Earliest Deadline
Scheduling Algorithm, submitted to IEEE Transactions on Computers, March 1993.

[BSR88] S Biyabani, J.A. Stankovic, and K. Ramamritham, The Integration of
Deadline and Criticalness in Hard Real-Time Scheduling, Proceedings of the Real-Time
Systems Symposium, December 1988 and IEEE Transactions on Software Engineering,

1988.

[CC89] H Chetto and M. Chetto, Scheduling Periodic and Sporadic Tasks in a Real-
Time System, Information Processing Letters vol. 30, no. 4, pp. 177-184, February 1989.

[Cer89] J J Cervantes, An Optimal Static Scheduling Algorithm for Hard Real-Time
Systems Specified in a Prototyping Language, Master's Thesis, Computer Science, Naval
Postgraduate School, Monterey, CA, December 1989.

[Cha92] T.C. Chang, Static Scheduler for Hard Real-Time Tasks on Multiprocessor
Systems, Master's Thesis, Computer Science Department, Naval Postgraduate School,
Monterey, CA, September 1992.

[CSR86] S. Cheng, J. Stankovic, and K. Ramamritham, Dynamic Scheduling of Groups
of Tasks with Precedence Constraints in Distributed Hard Real-Time Systems, IEEE
Real-Time Systems, Symposium, December 1986.

[Efe82] K. Efe, Heuristic Models of Task Assignment Scheduling in Distributed
Systems, IEEE Computer, June 1982.

[Fan90] B. Fan, Evaluations of Some Scheduling Algorithms for Hard Real-Time
Systems, Master's Thesis, Computer Science, Naval Postgraduate School, Monterey, CA,

June 1990.

[GJ79] M.R. Garey and D.S. Johnson, Computers and Intractability; A guide to the
Theory ojrNF'-Completeness, Freeman; San Francisco, 1979.

[Gra76] R Graham, Bounds on the Performance of Scheduling Algorithms, chapter in
Computer and Job Shop Scheduling Theory, John Wiley and Sons, pp. 165-227,1976.

159

[HL88] K. Hong and J. Y-T Leung, On-line Scheduling of Real-Time Tasks, IEEE
lyso.

[HS91] W. Halang and A. Stoyenko, Constructing Predictable Real-Time Systems
Kluwer Academic Publishers, 1991.

[Hsu90] L. Hsu, Multiprocessor Scheduling for Hard Real-Time Software, Master's
Thesis, Computer Science, Naval Postgraduate School, Monterey, CA, June 1990.

[JL88] Janson, D.M. and Luqi, A Static Scheduler for the Computer Aided
Prototyping System, Proceedings of the 3rd. Annual COMPASS Conference
Gaithersburg, MD, pp.92-97, July 1988.

[Lev91] J. Levine, Efficient Static Schedulers for the CAPS Systems, Master's Thesis
Computer Science Department, Naval Postgraduate School, Monterey, CA, June 1991.

[LRD93] J. W.S. Liu., J.L. Redondo, Z. Deng, T-S. Tia, R. Bettati, A. Silberman, M
Storch, R. Ha and W-K. Shih, PERTS: A Prototyping Environment for Real-Time
Systems, University of Illinois at Urbana, Technical Report UIUCDCS R-93-1802, May

[Luq89] Luqi, Handling Timing Constraints in Rapid Prototyping, IEEE Transactions
on Software Engineering, 1989 and in proceedings of the 22nd Annual Hawaii
International Conference on System Science, Kailua-Kona, HI, January 1989.

[Red93] J.L. Redondo, Schedulability Analyser Tool, University of Illinois at Urbana
Technical Report UIUCDCS R-93-1791, February 1993.

[SHH91] A. Stoyenko, V. Hamacher and R Holt, Analyzing Hard Real-Time
Programs for Guaranteed Schedulability, IEEE Trans, on Software Engineering vol SE-
17, pp. 737-750, 1991. B '

[Shi91] Man-Tak Shing, Efficient Scheduling Algorithms for Rapid Prototyping of
HardReal-Time Systems, paper, Naval Postgraduate School, Monterey, CA, May 1991.

™2] A" Sübennan' Task GraPh Model, University of Illinois at Urbana, September
1992.

[SRC85J J.A. Stankovic, K. Ramamritham, and S. Cheng, Evaluation of a Flexible
Task Scheduling Algorithm for Distributed Hard Real-Time Systems, IEEE Transactions
on Computers, vol. C-34, no. 12, pp. 1130-1143, December 1985

160

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library 2

Code 52
Naval Postgraduate School
Monterey, CA 93943-5101

3. Chairman, Department of Computer Science 1
CodeCS
Naval Postgraduate School
Monterey, CA 93943-5100

4. Computer Technology Programs !
Code 37
Naval Postgraduate School
Monterey, CA 93943

5. Center for Naval Analysis 1
4401 Ford Avenue
Alexandria, VA 22302-0268

6. Prof. Man-Tak Shing 10
Code CS/Sh
Naval Postgraduate School
Monterey, CA 93943

7. Prof. Luqi 10
CodeCS/Lq
Naval Postgraduate School
Monterey, CA 93943

8. Prof. Amr Zaky 1
CodeCS/Za
Naval Postgraduate School
Monterey, CA 93943

161

9. Prof. Sherif Michael
Code EC/Mi
Naval Postgraduate School
Monterey, CA 93943

10. Prof. James V. Sanders
CodePH/Sd
Naval Postgraduate School
Monterey, CA 93943

11. Prof. Valdis Berzins
CodeCS/Be
Naval Postgraduate School
Monterey, CA 93943

12. Prof. Jiang Zhu
Code CS/Zj
Naval Postgraduate School
Monterey, CA 93943

13. Colonel Salah El-Din M. Badr.
101 El-Tyaran Street
Nasser City, Cairo
EGYPT

14. LTC Mark R. Kindl
Software Technology Branch
Army Research Laboratory
115 OTCeefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800

15. Major Ronald B. Byrnes, Jr
Software Technology Branch
Array Research Laboratory
115 OXeefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800

162

16. Captain David A. Dampier.
Software Technology Branch
Army Research Laboratory
115 OTteefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800

17. Gabinete do Ministro da Marinha.
A/C Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

18. Estado Maior da Armada
A/C Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

19. Instituto de Pesquisas da Marinha
Diretor
A/C Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

20. Instituto de Pesquisas da Marinha
Grupo de Sistemas Digitals
Rua Ipiru 2, Dha do Govemador,
Rio de Janeiro, BRAZIL 21931

21. Diretoria de Armamento e Comunicacoes da Marinha.
A/C Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

22. Diretoria de Ensino da Marinha
A/C Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

23. PontifTcia Universidade Catölica
Depto. de Informauca
R. Marques de Säo Vicente 225, Gävea
Rio de Janeiro, BRAZIL 20000

163

24. Institute) Militär de Engenharia
Depto. de Informätica
Praia Vermelha, Urca
Rio de Janeiro, BRAZIL 20000

25. Centra de Analises de Sistemas Navais.
A/C Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

26. Diretoria de Informätica da Marinha
A/C Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

27. Centra de Analises de Sistemas Operativos
A/C Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

28. Coordenadoria de Projetos Especiais (COPESP).
A/C Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

29. Institute Tecnolögico da Aeronäutica.
Depto. de Ciencia da Computacäo
Säo Jos6 dos Campos,
Säo Paulo, BRAZIL 11000

30. Instituto Militär de Engenharia
Depto. de Ciencia da Computacäo
Praia Vermelha, Urca
Rio de Janeiro, BRAZIL 20000

31. Universidade Federal do Rio de Janeiro
COPPE - Depto. de Ciencia da Computacäo
Fundäo, Aha do Governador
Rio de Janeiro, BRAZIL 20000

164

32. Universidade de Säo Paulo
Depto. de Ciencia da Computacäo
Cidade Universitaria,
Säo Paulo, BRAZIL 10000

33. Universidade de Campinas
Depto. de Ciencia da Computacäo
Campinas,
Säo Paulo, BRAZIL 10000

34. CDR. Mauricio M. Cordeiro
Instituto de Pesquisas da Marinha
A/C Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

35. CDR. Gilberto F. Mota
Instituto de Pesquisas da Marinha
A/C Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

36. Prof. Al Mok
University of Texas - Austin
Department of Computer Science
Austin, TX 78712

37. Prof. Insup Lee
University of Pennsylvania
Department of Computer and Information Science
Philadelphia, PA 19104

38. Prof. A. Bums
University of York
Department of Computer Science
York, Y015DD
United Kingdon

39. Prof. John Stankovic
University of Massachussets
Department of Computer Science
Amherst, MA 01003

165

40. Prof. Alexander Stoyenko
New Jersey Institute of Technology
Real-time Computing Lab
University Heights,
Newark, NJ 07102

41. Prof Robert Dell
Code OR/De
Naval Postgraduate School
Monterey, CA 93943

42. June Favorite
Code OR
Naval Postgraduate School
Monterey, CA 93943

43. Prof. Craig Rasmussen
CodeMA/Ra
Naval Postgraduate School
Monterey, CA 93943

166

